Aide à la décision - R6.06

Optimisation

Un perceptron linéaire pour classifier Apprentissage par descente de gradient

Michel Salomon

IUT Nord Franche-Comté Département d'informatique

Un perceptron (ou neurone) linéaire pour classifier

- Considérons un problème défini par :
 - deux entrées $(x_1 \text{ et } x_2)$
 - une sortie (y^t)
- La fonction P_W calculée par le perceptron vérifie :
 - $P_W: \mathbb{R}^2 \to \mathbb{R}$
 - $P_W\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = f\left(w_0 \cdot x_0 + w_1 \cdot x_1 + w_2 \cdot x_2\right) = y$

avec $x_0 = +1$ la valeur de biais

• Quand f est la fonction identité f(x) = x (neurone linéaire)

•
$$P_W\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = w_0 \cdot 1 + w_1 \cdot x_1 + w_2 \cdot x_2 = w_0 + \sum_{i=1}^2 w_i \cdot x_i$$

Michel Salomon

Apprentissage ou entraînement du perceptron linéaire

- ullet Cas supervisé o un jeu de données d'entraînement S
 - n observations qui sont des paires d'entrées-sortie
 - $S = \{(X_1, Y_1^t), \dots, (X_n, Y_n^t)\}$, avec (X_j, Y_i^t) qui est une paire
- ullet Apprentissage supervisé o un problème d'optimisation
 - Erreur / fonction de perte L (loss) \rightarrow guide l'apprentissage

$$\min_{W} \quad \left[\frac{1}{n} \sum_{j=1}^{n} L\left(P_{W}(X_{j}), Y_{j}^{t}\right) \right]$$

$$\min_{W} \quad \left[\frac{1}{n} \sum_{j=1}^{n} L\left(y_{j}, y_{j}^{t}\right) \right]$$

- Erreur quadratique moyenne $\rightarrow L(y, y^t) = \frac{1}{2}(y y^t)^2$
- Pour un problème avec deux entrées et une sortie $(x_j, Y_j^t) = ((x_{1j}, x_{2j}), y_j^t)$ la fonction objectif à minimiser est

$$\min_{w} \left[\frac{1}{n} \sum_{j=1}^{n} \frac{1}{2} \left(\left(w_0 + \sum_{i=1}^{2} w_i \cdot x_{ij} \right) - y_j^t \right)^2 \right]$$

Apprentissage ou entraînement du perceptron linéaire - 1/2

• Règles de mise à jour / correction des poids synaptiques

$$w_i = w_i - \gamma \cdot \frac{\partial L}{\partial w_i}$$

où γ est le pas d'apprentissage (learning rate)

- Fonction de perte (ou de coût loss function) composée
 - $L(y_i, y_i^t) = \frac{1}{2} I_i^2$
 - $I_i = y_i y_i^t$
 - $y_j = f(v_j) = v_j$ (f la fonction d'activation \rightarrow identité)
 - $v_j = w_0 + \sum_{i=1}^2 w_i \cdot x_{ij}$

Apprentissage ou entraînement du perceptron linéaire - 2/2

- Calcul du gradient $\nabla L(y_j, y_j^t) = \left(\frac{\partial L}{\partial w_0}, \frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}\right)^T$
- Calcul de chaque composante $\frac{\partial L(y_j, y_j^t)}{\partial w_i}$ en utilisant la règle de dérivation en chaîne

$$\frac{\partial L(y_j, y_j^t)}{\partial w_i} = \frac{\partial L}{\partial l_j} \cdot \frac{\partial l_j}{\partial y_j} \cdot \frac{\partial y_j}{\partial v_j} \cdot \frac{\partial v_j}{\partial w_i}$$

οù

•
$$\frac{\partial L}{\partial I_j} = I_j$$
; $\frac{\partial I_j}{\partial y_j} = 1$; $\frac{\partial y_j}{\partial v_j} = 1$

•
$$v_j = w_0 + \sum_{i=1}^2 w_i \cdot x_{ij}$$

Mise en œuvre pratique - 1/2

- Considérons un problème de classification binaire
 - Deux classes (labels) $o y_i^t \in \{0,1\}$
 - Générer un jeu de données (make_blobs; make_moons)
 - Utiliser le module datasets de sklearn
 - Consulter Sample generators
 - Afficher le jeu de données avec mathplotlib
- ullet Écrire une fonction $\mathtt{predict} o \mathsf{calcule}$ la sortie du percep.
 - ullet Entrée o une observation du jeu de données ; les poids
 - Sortie \rightarrow la classe de l'entrée (label) y_i
 - 0 si $P_W(X_i)$ est négatif
 - 1 si $P_W(X_i)$ est positif ou nul
- ullet Écrire une fonction training o entraîne le perceptron
 - Entrées \rightarrow jeu de données; pas γ ; nombre d'époques (2 boucles \rightarrow nb époques et données; mise à jour w_i pour (X_i, Y_i^t))
 - Sortie \rightarrow poids obtenus après l'apprentissage

Mise en œuvre pratique - 2/2

- ullet Écrire une fonction ${ t accuracy} o { t précision}$ des prédictions
 - Entrées → jeu de données; poids synaptiques
 - ullet Sortie o pourcentage d'observations bien classifiées
- Écrire une fonction crossValid → cross-validation
 - Entrées \rightarrow jeu de données ; nombre de blocs (folds) (Partitionner données en n sous-ensembles disjoints k-fold with k=n)
 - Utiliser le module model_selection de sklearn pas d'apprentissage γ ; nombre d'époques
 - ullet Sortie o vecteur contenant les poids du meilleur perceptron
- Combiner les fonctions pour évaluer les performances d'un perceptron via la validation croisée sur le jeu de données
- Il existe différentes variantes de la descente de gradient
 - Batch GD, SGD, Mini-batch GD

Erreur quadratique et neurone linéaire ightarrow problème de régression