TP - MongoDB : CRUD de Base

Introduction aux Opérations Fondamentales

IUT Nord Franche-Comté Durée: 1h Objectif: Maitriser les opérations CRUD de base
dans MongoDB avec le shell mongosh

Contexte

Vous venez d’étre embauché dans une startup qui gére une boutique en ligne de livres.
Le CTO a décidé d’utiliser MongoDB pour gérer le catalogue de produits, les clients et
les commandes.

Votre mission est d’apprendre les opérations de base MongoDB en manipulant
directement la base de données via le shell.

Objectifs d’Apprentissage

A lafin de ce TP, vous saurez :

 [% Créer une base de données MongoDB

. Créer des collections

J Insérer des documents (un seul et plusieurs a la fois)

o Lire des documents avec filtres

o Mettre a jour des documents (modification, ajout, suppression de champs)
o Supprimer des documents

J Utiliser les opérateurs de requéte de base

Prérequis

Installation de MongoDB :
Vérifier que MongoDB est installé
mongod --version

Démarrer MongoDB (dans un terminal)
mongod

Dans un AUTRE terminal, se connecter au shell
mongosh

Astuce : Gardez toujours deux terminaux ouverts :

e Terminal 1: Le serveur MongoDB (mongod)

e Terminal 2 : Le shell MongoDB (mongosh) pour exécuter vos commandes

PARTIE 1: Creer la Base de Données et les
Collections

Exercice 1.1 : Créer et utiliser une base de données

Dans le shell mongosh , tapez les commandes suivantes:

// Afficher toutes les bases de données existantes

show dbs

// Créer/basculer vers la base "librairie_en_ligne"

use librairie_en_ligne

// Vérifier quelle base est active
db
// Résultat attendu : librairie_en_ligne

Question 1: Exécutez show dbs . Est-ce que librairie_en_ligne apparait dans la
liste ?

» . Réponse

<

Exercice 1.2 : Créer des collections (implicite)
Action :
Nous allons créer trois collections pour notre librairie :

e livres :Lecatalogue de livres
e clients :Lesclientsinscrits

e commandes :Les commandes passées

Rappel : Avec MongoDB, pas besoin de “CREATE TABLE”. Les collections se créent
automatiquement quand on insere des documents.

Vérifions d’abord qu’aucune collection n’existe :
// Lister toutes les collections

show collections
// Résultat attendu : (vide)

PARTIE 2 : CREATE - Insérer des Documents

Exercice 2.1 : Insérer un seul livre (insertOne)

Action : Créez votre premier livre dans la collection livres :

db.livres.insertOne({
titre: "1984",
auteur: "George Orwell",
annee: 1949,
genre: "Science-fiction dystopique",
prix: 12.99,
stock: 25,
editeur: {
nom: "Gallimard",
pays: "France"

+

tags: ["dystopie", "totalitarisme", "surveillance"]

1)

Résultat attendu :

acknowledged: true,
insertedId: ObjectId("507f1f77bcf86cd799439011") // ID généré

automatiquement

}

Observations importantes :

1. MongoDB a généré automatiquement un champ _id unique

2. Nous avons utilisé un document imbriqué pour editeur (équivalent d’un objet
JSON)

3. Nous avons utilisé un tableau pour tags

4. Pas besoin de définir un schéma au préalable !

Question 2 : Vérifiez que la collection livres abien été créée:

show collections
// Résultat attendu : livres

Question 3 : Vérifiez que la base de données apparait maintenant :

show dbs
// Résultat attendu : librairie_en_ligne (avec sa taille)

Exercice 2.2 : Insérer plusieurs livres (insertMany)

Action : Ajoutez 4 livres d’'un coup avec insertMany() :

db.livres.insertMany([

{

titre: "Le Seigneur des Anneaux",

auteur: "J.R.R. Tolkien",

annee: 1954,

genre: "Fantasy",

prix: 29.99,

stock: 15,

editeur: {
nom: "Christian Bourgois",
pays: "France"

i

tags: ["fantasy", "aventure", "épique"]

titre: "Harry Potter a 1l'école des sorciers",
auteur: "J.K. Rowling",
annee: 1997,
genre: "Fantasy jeunesse",
prix: 18.50,
stock: 50,
editeur: {
nom: "Gallimard Jeunesse",
pays: "France"

iy

tags: ["magie", "aventure", "école"]

titre: "Le Petit Prince",
auteur: "Antoine de Saint-Exupéry",
annee: 1943,
genre: "Conte philosophique",
prix: 8.90,
stock: 100,
editeur: {
nom: "Gallimard",
pays: "France"

3

tags: ["philosophie", "enfance", "voyage"]

titre: "Les Misérables",
auteur: "Victor Hugo",
annee: 1862,

genre: "Roman historique",

prix: 15.00,

stock: 8,

editeur: {
nom: "Le Livre de Poche",
pays: "France"

3

tags: ["classique", "histoire", "social"]

1)

Résultat attendu :

acknowledged: true,
insertedIds: {

'@': ObjectId("..."),
'1': ObjectId("..."),
'2': ObjectId("..."),
'3'": ObjectId("...")

Exercice 2.3 : Insérer des clients

A vous de jouer ! Créez la collection clients eninsérant 3 clients:

db.clients.insertMany ([
{
nom: "Dupont",
prenom: "Alice",
email: "alice.dupont@mail.com",
age: 28,
ville: "Paris",
dateInscription: new Date("2024-01-15"),
achatsTotal: 0

nom: "Martin",

prenom: "Bob",

email: "bob.martin@mail.com",

age: 35,

ville: "Lyon",

dateInscription: new Date('"2024-02-20"),
achatsTotal: ©

nom: "Dubois",

prenom: "Charlie",

email: "charlie.dubois@mail.com",

age: 42,

ville: "Marseille",

dateInscription: new Date("2024-03-10"),
achatsTotal: ©

1)

PARTIE 3 : READ - Lire des Documents

Exercice 3.1: Lire TOUS les documents d’une collection

Action :

// Lire tous les livres
db.livres.find()

// Version plus lisible (pretty print)
db.livres.find().pretty()

Astuce : Si vous avez beaucoup de documents, MongoDB affiche seulement les 20
premiers. Tapez it (iterate) pour voir les suivants.

Exercice 3.2 : Lire UN SEUL document (findOne)

Action :

// Récupérer un livre au hasard
db.livres.findOne()

// Récupérer le livre '"1984"
db.livres.findOne({ titre: "1984" })

// Récupérer un livre par auteur
db.livres.findOne({ auteur: "J.K. Rowling" })

Question 4 : Que se passe-t-il si on cherche un livre qui n’existe pas ?

db.livres.findOne({ titre: "Livre Inexistant" })
// Résultat : null

Exercice 3.3 : Filtrer avec des conditions (opérateurs de comparaison)

Action : Trouvez tous les livres qui colitent moins de 15€ :

db.livres.find({ prix: { $1t: 15 } })

Opérateurs disponibles :

Opérateur Signification Exemple

$1t Less Than (<) { prix: { $1t: 15 } }
Less Than or Equal _

$lte (<=) { prix: { $lte: 15 } }
<=

$gt Greater Than (>) { annee: { $gt: 2000 } }

Greater Than or Equal
$gte { stock: { $gte: 20 } }

(>=)
$ne Not Equal (!=) { genre: { $ne: "Fantasy" } }

_ { genre: { $in: ["Fantasy", "Science-fiction
$in Dans une liste _
dystopique"] } }

Question 5 - Exercices pratiques : Trouvez:

// A. Tous les livres publiés APRES 1950
db.livres.find({ annee: { $gt: 1950 } })

// B. Tous les livres avec un stock SUPERIEUR ou EGAL & 20
db.livres.find({ stock: { $gte: 20 } })

// C. Tous les livres qui ne sont PAS de genre "Fantasy"
db.livres.find({ genre: { $ne: "Fantasy" } })

// D. Tous les livres de genre "Fantasy" OU "Science-fiction dystopique"
db.livres.find({ genre: { $in: ["Fantasy", "Science-fiction dystopique"] }

1)

Exercice 3.4 : Filtrer avec plusieurs conditions (opérateurs logiques)
Action : Trouvez tous les livres qui :

e Coltentmoinsde 20€ ET

e Ontun stock supérieur a 10

// Méthode 1 : Implicite (ET logique par défaut)
db.livres.find({

prix: { $1lt: 20 },

stock: { $gt: 10 }
1)

// Méthode 2 : Explicite avec $and
db.livres.find({
$and: [
{ prix: { $1t: 20 } },
{ stock: { $gt: 10 } }

1)

Opérateur $or : Trouvez tous les livres écrits par “Victor Hugo” OU publiés apres
1990:

db.livres.find({
$or: [
{ auteur: "Victor Hugo" 1},
{ annee: { $gt: 1990 } }
]
1)

Exercice 3.5 : Rechercher dans un champ imbriqué

Action : Trouvez tous les livres publiés par “Gallimard” :

db.livres.find({ "editeur.nom": "Gallimard" })

A Important : Utilisez la notation pointée entre guillemets: "editeur.nom"

Exercice 3.6 : Rechercher dans un tableau

Action : Trouvez tous les livres qui ont le tag “aventure” :

db.livres.find({ tags: "aventure" })

MongoDB est intelligent ! Méme si tags est un tableau, vous pouvez chercher une
valeur directement.

Bonus : Trouvez tous les livres qui ont A LA FOIS les tags “fantasy” ET “épique” :

db.livres.find({ tags: { $all: ["fantasy", "épique"] } })

Exercice 3.7 : Projection (choisir les champs a retourner)

Par défaut, find() retourne TOUS les champs. Parfois, vous voulez seulement
certains champs.

Action : Retournez seulement le titre etle prix deslivres:

db.livres.find(

{}, // Filtre vide = tous les documents
{ titre: 1, prix: 1 } // Projection : 1 = inclure, 0 = exclure

)

Résultat :

[
{ _id: ObjectId("..."), titre: "1984", prix: 12.99 },
{ _id: ObjectId("..."), titre: "Le Seigneur des Anneaux", prix: 29.99 },
/]

Astuce : Le champ _id est TOUJOURS retourné par défaut. Pour l’exclure :

db.livres.find(

{3
{ _id: 0, titre: 1, prix: 1 }

PARTIE 4 : UPDATE - Mettre a Jour des Documents

Exercice 4.1 : Modifier un champ avec $set

Scénario : Le livre “1984” est en promotion ! Passez son prix a 9.99€.
db.livres.updateOne(
{ titre: "1984" 3}, // Filtre : quel document modifier ?

{ $set: { prix: 9.99 } } // Modification : nouveau prix
)

Résultat :

{
acknowledged: true,
matchedCount: 1, // 1 document trouvé
modifiedCount: 1 // 1 document modifié
}

Vérification :

db.livres.findOne({ titre: "1984" })
// prix devrait maintenant étre 9.99

Exercice 4.2 : Ajouter un nouveau champ avec $set

Scénario : Ajoutez un champ enPromotion: true au livre “1984”.

db.livres.updateOne(
{ titre: "1984" 1},
{ $set: { enPromotion: true } }

Observation : $set peut a la fois modifier un champ existant ET créer un
nouveau champ !

Exercice 4.3 : Supprimer un champ avec $unset

Scénario : Finalement, la promotion est terminée. Supprimez le champ

enPromotion.

db.livres.updateOne(
{ titre: "1984" },
{ $unset: { enPromotion: "" } } // Valeur vide, le champ sera supprimé

Vérification :

db.livres.findOne({ titre: "1984" })
// Le champ enPromotion n'existe plus

Exercice 4.4 : Incrémenter/Décrémenter avec Sinc

Scénario : Un client achéte 3 exemplaires du “Petit Prince”. Diminuez le stock de 3.

db.livres.updateOne(
{ titre: "Le Petit Prince" },
{ $inc: { stock: -3 } } // -3 pour décrémenter

Vérification :

db.livres.findOne({ titre: "Le Petit Prince" 7},

{ titre: 1, stock: 1 })
// stock devrait étre 97 (était 100,

maintenant 100 - 3)

Bonus : Pour INCREMENTER, utilisez une valeur positive :

db.livres.updateOne(

{ titre: "Le Petit Prince" 1},

{ $inc: { stock: 5 } } // +5 pour augmenter le stock
)

Exercice 4.5 : Ajouter un élément a un tableau avec $push

Scénario : Ajoutez le tag “bestseller” au livre “Harry Potter”.

db.livres.updateOne(

{ titre: "Harry Potter a 1'école des sorciers" },

{ $push: { tags: "bestseller" } }

Vérification :

db.livres.findOne({ titre:
11})

// tags devrait maintenant contenir "bestseller"

"Harry Potter & 1'école des sorciers" }, { tags:

Exercice 4.6 : Retirer un élément d’un tableau avec $pull

Scénario : Retirez le tag “école” du livre “Harry Potter”,

db.livres.updateOne(
{ titre: "Harry Potter a 1'école des sorciers" },
{ $pull: { tags: "école" } }

Vérification :

db.livres.findOne({ titre: "Harry Potter & 1'école des sorciers" }, { tags:
11})

// "école" ne devrait plus étre dans tags

Exercice 4.7 : Mettre a jour PLUSIEURS documents (updateMany)

Scénario : Tous les livres de I'éditeur “Gallimard” passent en promotion : réduisez
leur prix de 10%.

// 1. Trouvez d'abord tous les livres Gallimard pour voir les prix actuels
db.livres.find({ "editeur.nom": "Gallimard" }, { titre: 1, prix: 1 })

// 2. Réduisez tous les prix de 10% (multipliez par 0.9)
db.livres.updateMany(
{ "editeur.nom": "Gallimard" },

{ $mul: { prix: 0.9 } } // $mul = multiply

Résultat :

{
acknowledged: true,
matchedCount: 3, // 3 livres Gallimard trouvés
modifiedCount: 3 // 3 livres modifiés

Exercice 4.8 : Upsert (Update ou Insert si n’existe pas)

Scénario : Vous recevez une nouvelle commande pour le livre “Dune”. S’il existe,
augmentez son stock de 10. S’il n’existe pas, créez-le.

db.livres.updateOne(
{ titre: "Dune" },
{
$set: {
titre: "Dune",
auteur: "Frank Herbert",
annee: 1965,
genre: "Science-fiction",
prix: 22.50,
editeur: { nom: "Robert Laffont", pays: "France" 3},
tags: ["SF", "désert", "politique"]
3
$inc: { stock: 10 }
}
{ upsert: true } // Option magique !

Explication :

e Si“Dune” existe déja : incrémente le stock de 10

e Si“Dune” n’existe PAS : crée le document avec stock = 10

Vérification :

db.livres.findOne({ titre: "Dune" })

PARTIE 5 : DELETE - Supprimer des Documents

Exercice 5.1 : Supprimer UN document (deleteOne)

Scénario : Le livre “Dune” ne se vend pas bien. Supprimez-le du catalogue.

db.livres.deleteOne({ titre: "Dune" })

Résultat :

acknowledged: true,
deletedCount: 1 // 1 document supprimé

Vérification :

db.livres.findOne({ titre: "Dune" })
// Résultat : null (n'existe plus)

Exercice 5.2 : Supprimer PLUSIEURS documents (deleteMany)
Scénario : Supprimez tous les livres qui ont un stock inférieur a 10 (rupture de

stock).

// 1. Voyez d'abord quels livres seront supprimés
db.livres.find({ stock: { $1lt: 10 } }, { titre: 1, stock: 1 })

// 2. Supprimez-les
db.livres.deleteMany({ stock: { $1t: 10 } })

Résultat :

acknowledged: true,
deletedCount: 1 // "Les Misérables" avait un stock de 8

Exercice 5.3 : Supprimer TOUS les documents d’une collection

A ATTENTION : Opération dangereuse !

// Supprimer tous les clients (pour repartir de zéro)
db.clients.deleteMany({})

Différence avec drop() :

// deleteMany({}) : Supprime tous les documents MAIS garde la collection
db.clients.deleteMany({})

// drop() : Supprime la collection entiére (structure + données)
db.clients.drop()

PARTIE 6 : Exercices Pratiques Complets

Exercice 6.1 : Gestion d’une commande client
Scénario complet :
Alice Dupont commande 2 exemplaires de “Harry Potter a I’école des sorciers”.

Etapes a réaliser :

// 1. Vérifier le stock disponible
db.livres.findOne(
{ titre: "Harry Potter a 1'école des sorciers" },
{ titre: 1, stock: 1, prix: 1 }

// 2. Décrémenter le stock de 2
db.livres.updateOne(
{ titre: "Harry Potter a 1'école des sorciers" },
{ $inc: { stock: -2 } }

// 3. Mettre a jour le montant total des achats d'Alice
// (supposons que le livre colte 18.50€, donc 2 x 18.50 = 37€)
db.clients.updateOne(

{ email: "alice.dupont@mail.com" },

{ $inc: { achatsTotal: 37.00 } }

// 4. Créer la commande
db.commandes.insertOne({
clientEmail: "alice.dupont@mail.com",
livres: [
{
titre: "Harry Potter a l1'école des sorciers",
quantite: 2,
prixUnitaire: 18.50
}

1,
montantTotal: 37.00,

dateCommande: new Date(),
statut: "confirmée"

1)

Exercice 6.2 : Statistiques du catalogue
A vous de jouer ! Répondez a ces questions avec des requétes MongoDB :

Question A: Combieny a-t-il de livres dans le catalogue ?

db.livres.countDocuments()

Question B : Quel est le livre le plus cher ?

db.livres.find().sort({ prix: -1 }).limit(1)

Question C: Quel est le livre le moins cher ?

db.livres.find().sort({ prix: 1 }).limit(1)

Question D : Combien de livres de genre “Fantasy” ?

db.livres.countDocuments({ genre: "Fantasy" })

// 0U

db.livres.countDocuments({ genre: /Fantasy/i }) // Regex insensible a la
casse

Question E : Listez tous les livres par ordre de prix décroissant :

db.livres.find({}, { titre: 1, prix: 1 }).sort({ prix: -1 })

Nettoyage et Gestion

Supprimer une collection compléte

db.commandes.drop()
// Résultat : true

Supprimer la base de données entiére

db.dropDatabase()
// Résultat : { ok: 1, dropped: "librairie_en_ligne" }

Récapitulatif des Commandes

Commandes de Gestion

Commande Description
show dbs Liste toutes les bases de données
use nom_db Crée/bascule vers une base
db Affiche la base active
show collections Liste toutes les collections
db.collection.drop() Supprime une collection

db.dropDatabase() Supprime la base active

Commandes CRUD

Opération

CREATE

READ

UPDATE

DELETE

Commande

insertOne()

insertMany()

find()

findOne()

countDocuments()

updateOne()

updateMany ()

deleteOne()

deleteMany()

Opérateurs de Mise a Jour

Opérateur

$set
$unset
$inc
$mul
$push

$pull

Usage

db.

db.

db.

db.

db.

db.

db.

db.

db.

livres.

livres.

livres.

livres.

livres.

livres.

livres.

livres.

livres.

Modifier/Ajouter un champ

Supprimer un champ

Incrémenter/Décrémenter

Multiplier
Ajouter a un tableau

Retirer d’un tableau

Exemple

insertOne({ titre:

insertMany([{...},

”---" })

{3

find({ prix: { $1lt: 20 } })

findOne({ titre: "1984" })

countDocuments()

updateOne({...}, { $set: {...} 1})

updateMany({...},

deleteOne({ titre:

{ $inc: {...} })

")

deleteMany({ stock: { $1t: 5 } })

Exemple

{ $set: { prix: 9.99 } }

{ $unset: { promo: "" } }

{ $inc: { stock:

-5} 3

{ $mul: { prix: 0.9 } }

{ $push: { tags:

{ $pull: { tags:

"nouveau" } }

"ancien" } }

Opérateurs de Requéte

Opérateur Signification Exemple

$1t < { prix: { $lt: 15 } }

$lte <= { prix: { $lte: 15 } }

$gt > { annee: { $gt: 2000 } }

$gte >= { stock: { $gte: 20 } }

$ne I= { genre: { $ne: "Fantasy" } }

$in Dans une liste { genre: { $in: ["Fantasy", "SF"] } }

$or OU logique { sor: [{...}, {...3]1}

$and ET logique { sand: [{...}, {...3}]1}

$all Tous les éléments { tags: { $all: ["fantasy", "épique"] } }
Livrables Attendus

A la fin du TP, vous devez avoir :

. Une base de données librairie_en_ligne créée
o 3 collections: livres, clients, commandes

o Au moins 5 livres dans la collection livres

J Au moins 3 clients dans la collection clients

J Au moins 1 commande enregistrée

. Avoir pratiqué toutes les opérations CRUD

. Avoir utilisé au moins 5 opérateurs différents (set,inc, push,pull, It,gt, etc.)

Questions de Réflexion

1. Quelle est la principale différence entre SQL et MongoDB ?

o SQL:Schémarigide, tables, relations avec clés étrangeres

o MongoDB : Schéma flexible, collections, documents imbriqués
2. Quand utiliser updateone() vs updateMany() ?

o updateone() :Modifier UN SEUL document (méme si plusieurs
correspondent)

o updateMany() : Modifier TOUS les documents qui correspondent
3. Pourquoi utiliser $inc au lieu de récupérer, calculer, puis mettre a jour ?

o $inc estatomique: évite les problemes de concurrence (race conditions)
4. Quelle est la différence entre deleteMany({}) et drop() ?

o deleteMany({}) : Supprime tous les documents, mais garde la collection

o drop() :Supprime la collection entiere (structure + données)

Bon courage !

