
TP - MongoDB : CRUD de Base

Introduction aux Opérations Fondamentales

IUT Nord Franche-Comté Durée: 1h Objectif: Maîtriser les opérations CRUD de base
dans MongoDB avec le shell mongosh

📋 Contexte

Vous venez d’être embauché dans une startup qui gère une boutique en ligne de livres.
Le CTO a décidé d’utiliser MongoDB pour gérer le catalogue de produits, les clients et
les commandes.

Votre mission est d’apprendre les opérations de base MongoDB en manipulant
directement la base de données via le shell.

🎯 Objectifs d’Apprentissage

À la fin de ce TP, vous saurez :

✅ Créer une base de données MongoDB

✅ Créer des collections

✅ Insérer des documents (un seul et plusieurs à la fois)

✅ Lire des documents avec filtres

✅ Mettre à jour des documents (modification, ajout, suppression de champs)

✅ Supprimer des documents

✅ Utiliser les opérateurs de requête de base

📦 Prérequis

Installation de MongoDB :

Vérifier que MongoDB est installé

mongod --version

Démarrer MongoDB (dans un terminal)

mongod

Dans un AUTRE terminal, se connecter au shell

mongosh

💡 Astuce : Gardez toujours deux terminaux ouverts :

Terminal 1 : Le serveur MongoDB (mongod)

Terminal 2 : Le shell MongoDB (mongosh) pour exécuter vos commandes

🚀 PARTIE 1 : Créer la Base de Données et les
Collections

Exercice 1.1 : Créer et utiliser une base de données

Dans le shell mongosh , tapez les commandes suivantes :

// Afficher toutes les bases de données existantes

show dbs

// Créer/basculer vers la base "librairie_en_ligne"

use librairie_en_ligne

// Vérifier quelle base est active

db

// Résultat attendu : librairie_en_ligne

❓ Question 1 : Exécutez show dbs . Est-ce que librairie_en_ligne apparaît dans la
liste ?

💡 Réponse

Exercice 1.2 : Créer des collections (implicite)

📝 Action :

Nous allons créer trois collections pour notre librairie :

livres : Le catalogue de livres

clients : Les clients inscrits

commandes : Les commandes passées

💡 Rappel : Avec MongoDB, pas besoin de “CREATE TABLE”. Les collections se créent
automatiquement quand on insère des documents.

Vérifions d’abord qu’aucune collection n’existe :

// Lister toutes les collections

show collections

// Résultat attendu : (vide)

📚 PARTIE 2 : CREATE - Insérer des Documents

Exercice 2.1 : Insérer un seul livre (insertOne)

📝 Action : Créez votre premier livre dans la collection livres :

db.livres.insertOne({

 titre: "1984",

 auteur: "George Orwell",

 annee: 1949,

 genre: "Science-fiction dystopique",

 prix: 12.99,

 stock: 25,

 editeur: {

 nom: "Gallimard",

 pays: "France"

 },

 tags: ["dystopie", "totalitarisme", "surveillance"]

})

✅ Résultat attendu :

{

 acknowledged: true,

 insertedId: ObjectId("507f1f77bcf86cd799439011") // ID généré

automatiquement

}

🔍 Observations importantes :

1. MongoDB a généré automatiquement un champ _id unique

2. Nous avons utilisé un document imbriqué pour editeur (équivalent d’un objet
JSON)

3. Nous avons utilisé un tableau pour tags

4. Pas besoin de définir un schéma au préalable !

❓ Question 2 : Vérifiez que la collection livres a bien été créée :

show collections

// Résultat attendu : livres

❓ Question 3 : Vérifiez que la base de données apparaît maintenant :

show dbs

// Résultat attendu : librairie_en_ligne (avec sa taille)

Exercice 2.2 : Insérer plusieurs livres (insertMany)

📝 Action : Ajoutez 4 livres d’un coup avec insertMany() :

db.livres.insertMany([

 {

 titre: "Le Seigneur des Anneaux",

 auteur: "J.R.R. Tolkien",

 annee: 1954,

 genre: "Fantasy",

 prix: 29.99,

 stock: 15,

 editeur: {

 nom: "Christian Bourgois",

 pays: "France"

 },

 tags: ["fantasy", "aventure", "épique"]

 },

 {

 titre: "Harry Potter à l'école des sorciers",

 auteur: "J.K. Rowling",

 annee: 1997,

 genre: "Fantasy jeunesse",

 prix: 18.50,

 stock: 50,

 editeur: {

 nom: "Gallimard Jeunesse",

 pays: "France"

 },

 tags: ["magie", "aventure", "école"]

 },

 {

 titre: "Le Petit Prince",

 auteur: "Antoine de Saint-Exupéry",

 annee: 1943,

 genre: "Conte philosophique",

 prix: 8.90,

 stock: 100,

 editeur: {

 nom: "Gallimard",

 pays: "France"

 },

 tags: ["philosophie", "enfance", "voyage"]

 },

 {

 titre: "Les Misérables",

 auteur: "Victor Hugo",

 annee: 1862,

 genre: "Roman historique",

 prix: 15.00,

 stock: 8,

 editeur: {

 nom: "Le Livre de Poche",

 pays: "France"

 },

 tags: ["classique", "histoire", "social"]

 }

])

✅ Résultat attendu :

{

 acknowledged: true,

 insertedIds: {

 '0': ObjectId("..."),

 '1': ObjectId("..."),

 '2': ObjectId("..."),

 '3': ObjectId("...")

 }

}

Exercice 2.3 : Insérer des clients

📝 À vous de jouer ! Créez la collection clients en insérant 3 clients :

db.clients.insertMany([

 {

 nom: "Dupont",

 prenom: "Alice",

 email: "alice.dupont@mail.com",

 age: 28,

 ville: "Paris",

 dateInscription: new Date("2024-01-15"),

 achatsTotal: 0

 },

 {

 nom: "Martin",

 prenom: "Bob",

 email: "bob.martin@mail.com",

 age: 35,

 ville: "Lyon",

 dateInscription: new Date("2024-02-20"),

 achatsTotal: 0

 },

 {

 nom: "Dubois",

 prenom: "Charlie",

 email: "charlie.dubois@mail.com",

 age: 42,

 ville: "Marseille",

 dateInscription: new Date("2024-03-10"),

 achatsTotal: 0

 }

])

🔍 PARTIE 3 : READ - Lire des Documents

Exercice 3.1 : Lire TOUS les documents d’une collection

📝 Action :

// Lire tous les livres

db.livres.find()

// Version plus lisible (pretty print)

db.livres.find().pretty()

💡 Astuce : Si vous avez beaucoup de documents, MongoDB affiche seulement les 20
premiers. Tapez it (iterate) pour voir les suivants.

Exercice 3.2 : Lire UN SEUL document (findOne)

📝 Action :

// Récupérer un livre au hasard

db.livres.findOne()

// Récupérer le livre "1984"

db.livres.findOne({ titre: "1984" })

// Récupérer un livre par auteur

db.livres.findOne({ auteur: "J.K. Rowling" })

❓ Question 4 : Que se passe-t-il si on cherche un livre qui n’existe pas ?

db.livres.findOne({ titre: "Livre Inexistant" })

// Résultat : null

Exercice 3.3 : Filtrer avec des conditions (opérateurs de comparaison)

📝 Action : Trouvez tous les livres qui coûtent moins de 15€ :

db.livres.find({ prix: { $lt: 15 } })

🔧 Opérateurs disponibles :

Opérateur Signification Exemple

$lt Less Than (<) { prix: { $lt: 15 } }

$lte
Less Than or Equal
(<=)

{ prix: { $lte: 15 } }

$gt Greater Than (>) { annee: { $gt: 2000 } }

$gte
Greater Than or Equal
(>=)

{ stock: { $gte: 20 } }

$ne Not Equal (!=) { genre: { $ne: "Fantasy" } }

$in Dans une liste
{ genre: { $in: ["Fantasy", "Science-fiction

dystopique"] } }

❓ Question 5 - Exercices pratiques : Trouvez :

// A. Tous les livres publiés APRÈS 1950

db.livres.find({ annee: { $gt: 1950 } })

// B. Tous les livres avec un stock SUPÉRIEUR ou ÉGAL à 20

db.livres.find({ stock: { $gte: 20 } })

// C. Tous les livres qui ne sont PAS de genre "Fantasy"

db.livres.find({ genre: { $ne: "Fantasy" } })

// D. Tous les livres de genre "Fantasy" OU "Science-fiction dystopique"

db.livres.find({ genre: { $in: ["Fantasy", "Science-fiction dystopique"] }

})

Exercice 3.4 : Filtrer avec plusieurs conditions (opérateurs logiques)

📝 Action : Trouvez tous les livres qui :

Coûtent moins de 20€ ET

Ont un stock supérieur à 10

// Méthode 1 : Implicite (ET logique par défaut)

db.livres.find({

 prix: { $lt: 20 },

 stock: { $gt: 10 }

})

// Méthode 2 : Explicite avec $and

db.livres.find({

 $and: [

 { prix: { $lt: 20 } },

 { stock: { $gt: 10 } }

]

})

💡 Opérateur $or : Trouvez tous les livres écrits par “Victor Hugo” OU publiés après
1990 :

db.livres.find({

 $or: [

 { auteur: "Victor Hugo" },

 { annee: { $gt: 1990 } }

]

})

Exercice 3.5 : Rechercher dans un champ imbriqué

📝 Action : Trouvez tous les livres publiés par “Gallimard” :

db.livres.find({ "editeur.nom": "Gallimard" })

⚠️ Important : Utilisez la notation pointée entre guillemets : "editeur.nom"

Exercice 3.6 : Rechercher dans un tableau

📝 Action : Trouvez tous les livres qui ont le tag “aventure” :

db.livres.find({ tags: "aventure" })

💡 MongoDB est intelligent ! Même si tags est un tableau, vous pouvez chercher une
valeur directement.

Bonus : Trouvez tous les livres qui ont À LA FOIS les tags “fantasy” ET “épique” :

db.livres.find({ tags: { $all: ["fantasy", "épique"] } })

Exercice 3.7 : Projection (choisir les champs à retourner)

Par défaut, find() retourne TOUS les champs. Parfois, vous voulez seulement
certains champs.

📝 Action : Retournez seulement le titre et le prix des livres :

db.livres.find(

 {}, // Filtre vide = tous les documents

 { titre: 1, prix: 1 } // Projection : 1 = inclure, 0 = exclure

)

✅ Résultat :

[

 { _id: ObjectId("..."), titre: "1984", prix: 12.99 },

 { _id: ObjectId("..."), titre: "Le Seigneur des Anneaux", prix: 29.99 },

 // ...

]

💡 Astuce : Le champ _id est TOUJOURS retourné par défaut. Pour l’exclure :

db.livres.find(

 {},

 { _id: 0, titre: 1, prix: 1 }

)

✏️ PARTIE 4 : UPDATE - Mettre à Jour des Documents

Exercice 4.1 : Modifier un champ avec $set

📝 Scénario : Le livre “1984” est en promotion ! Passez son prix à 9.99€.

db.livres.updateOne(

 { titre: "1984" }, // Filtre : quel document modifier ?

 { $set: { prix: 9.99 } } // Modification : nouveau prix

)

✅ Résultat :

{

 acknowledged: true,

 matchedCount: 1, // 1 document trouvé

 modifiedCount: 1 // 1 document modifié

}

🔍 Vérification :

db.livres.findOne({ titre: "1984" })

// prix devrait maintenant être 9.99

Exercice 4.2 : Ajouter un nouveau champ avec $set

📝 Scénario : Ajoutez un champ enPromotion: true au livre “1984”.

db.livres.updateOne(

 { titre: "1984" },

 { $set: { enPromotion: true } }

)

💡 Observation : $set peut à la fois modifier un champ existant ET créer un
nouveau champ !

Exercice 4.3 : Supprimer un champ avec $unset

📝 Scénario : Finalement, la promotion est terminée. Supprimez le champ
enPromotion .

db.livres.updateOne(

 { titre: "1984" },

 { $unset: { enPromotion: "" } } // Valeur vide, le champ sera supprimé

)

🔍 Vérification :

db.livres.findOne({ titre: "1984" })

// Le champ enPromotion n'existe plus

Exercice 4.4 : Incrémenter/Décrémenter avec $inc

📝 Scénario : Un client achète 3 exemplaires du “Petit Prince”. Diminuez le stock de 3.

db.livres.updateOne(

 { titre: "Le Petit Prince" },

 { $inc: { stock: -3 } } // -3 pour décrémenter

)

🔍 Vérification :

db.livres.findOne({ titre: "Le Petit Prince" }, { titre: 1, stock: 1 })

// stock devrait être 97 (était 100, maintenant 100 - 3)

💡 Bonus : Pour INCRÉMENTER, utilisez une valeur positive :

db.livres.updateOne(

 { titre: "Le Petit Prince" },

 { $inc: { stock: 5 } } // +5 pour augmenter le stock

)

Exercice 4.5 : Ajouter un élément à un tableau avec $push

📝 Scénario : Ajoutez le tag “bestseller” au livre “Harry Potter”.

db.livres.updateOne(

 { titre: "Harry Potter à l'école des sorciers" },

 { $push: { tags: "bestseller" } }

)

🔍 Vérification :

db.livres.findOne({ titre: "Harry Potter à l'école des sorciers" }, { tags:

1 })

// tags devrait maintenant contenir "bestseller"

Exercice 4.6 : Retirer un élément d’un tableau avec $pull

📝 Scénario : Retirez le tag “école” du livre “Harry Potter”.

db.livres.updateOne(

 { titre: "Harry Potter à l'école des sorciers" },

 { $pull: { tags: "école" } }

)

🔍 Vérification :

db.livres.findOne({ titre: "Harry Potter à l'école des sorciers" }, { tags:

1 })

// "école" ne devrait plus être dans tags

Exercice 4.7 : Mettre à jour PLUSIEURS documents (updateMany)

📝 Scénario : Tous les livres de l’éditeur “Gallimard” passent en promotion : réduisez
leur prix de 10%.

// 1. Trouvez d'abord tous les livres Gallimard pour voir les prix actuels

db.livres.find({ "editeur.nom": "Gallimard" }, { titre: 1, prix: 1 })

// 2. Réduisez tous les prix de 10% (multipliez par 0.9)

db.livres.updateMany(

 { "editeur.nom": "Gallimard" },

 { $mul: { prix: 0.9 } } // $mul = multiply

)

✅ Résultat :

{

 acknowledged: true,

 matchedCount: 3, // 3 livres Gallimard trouvés

 modifiedCount: 3 // 3 livres modifiés

}

Exercice 4.8 : Upsert (Update ou Insert si n’existe pas)

📝 Scénario : Vous recevez une nouvelle commande pour le livre “Dune”. S’il existe,
augmentez son stock de 10. S’il n’existe pas, créez-le.

db.livres.updateOne(

 { titre: "Dune" },

 {

 $set: {

 titre: "Dune",

 auteur: "Frank Herbert",

 annee: 1965,

 genre: "Science-fiction",

 prix: 22.50,

 editeur: { nom: "Robert Laffont", pays: "France" },

 tags: ["SF", "désert", "politique"]

 },

 $inc: { stock: 10 }

 },

 { upsert: true } // ⭐ Option magique !

)

💡 Explication :

Si “Dune” existe déjà : incrémente le stock de 10

Si “Dune” n’existe PAS : crée le document avec stock = 10

🔍 Vérification :

db.livres.findOne({ titre: "Dune" })

🗑️ PARTIE 5 : DELETE - Supprimer des Documents

Exercice 5.1 : Supprimer UN document (deleteOne)

📝 Scénario : Le livre “Dune” ne se vend pas bien. Supprimez-le du catalogue.

db.livres.deleteOne({ titre: "Dune" })

✅ Résultat :

{

 acknowledged: true,

 deletedCount: 1 // 1 document supprimé

}

🔍 Vérification :

db.livres.findOne({ titre: "Dune" })

// Résultat : null (n'existe plus)

Exercice 5.2 : Supprimer PLUSIEURS documents (deleteMany)

📝 Scénario : Supprimez tous les livres qui ont un stock inférieur à 10 (rupture de
stock).

// 1. Voyez d'abord quels livres seront supprimés

db.livres.find({ stock: { $lt: 10 } }, { titre: 1, stock: 1 })

// 2. Supprimez-les

db.livres.deleteMany({ stock: { $lt: 10 } })

✅ Résultat :

{

 acknowledged: true,

 deletedCount: 1 // "Les Misérables" avait un stock de 8

}

Exercice 5.3 : Supprimer TOUS les documents d’une collection

⚠️ ATTENTION : Opération dangereuse !

// Supprimer tous les clients (pour repartir de zéro)

db.clients.deleteMany({})

💡 Différence avec drop() :

// deleteMany({}) : Supprime tous les documents MAIS garde la collection

db.clients.deleteMany({})

// drop() : Supprime la collection entière (structure + données)

db.clients.drop()

📊 PARTIE 6 : Exercices Pratiques Complets

Exercice 6.1 : Gestion d’une commande client

📝 Scénario complet :

Alice Dupont commande 2 exemplaires de “Harry Potter à l’école des sorciers”.

Étapes à réaliser :

// 1. Vérifier le stock disponible

db.livres.findOne(

 { titre: "Harry Potter à l'école des sorciers" },

 { titre: 1, stock: 1, prix: 1 }

)

// 2. Décrémenter le stock de 2

db.livres.updateOne(

 { titre: "Harry Potter à l'école des sorciers" },

 { $inc: { stock: -2 } }

)

// 3. Mettre à jour le montant total des achats d'Alice

// (supposons que le livre coûte 18.50€, donc 2 × 18.50 = 37€)

db.clients.updateOne(

 { email: "alice.dupont@mail.com" },

 { $inc: { achatsTotal: 37.00 } }

)

// 4. Créer la commande

db.commandes.insertOne({

 clientEmail: "alice.dupont@mail.com",

 livres: [

 {

 titre: "Harry Potter à l'école des sorciers",

 quantite: 2,

 prixUnitaire: 18.50

 }

],

 montantTotal: 37.00,

 dateCommande: new Date(),

 statut: "confirmée"

})

Exercice 6.2 : Statistiques du catalogue

📝 À vous de jouer ! Répondez à ces questions avec des requêtes MongoDB :

Question A : Combien y a-t-il de livres dans le catalogue ?

db.livres.countDocuments()

Question B : Quel est le livre le plus cher ?

db.livres.find().sort({ prix: -1 }).limit(1)

Question C : Quel est le livre le moins cher ?

db.livres.find().sort({ prix: 1 }).limit(1)

Question D : Combien de livres de genre “Fantasy” ?

db.livres.countDocuments({ genre: "Fantasy" })

// OU

db.livres.countDocuments({ genre: /Fantasy/i }) // Regex insensible à la

casse

Question E : Listez tous les livres par ordre de prix décroissant :

db.livres.find({}, { titre: 1, prix: 1 }).sort({ prix: -1 })

🧹 Nettoyage et Gestion

Supprimer une collection complète

db.commandes.drop()

// Résultat : true

Supprimer la base de données entière

db.dropDatabase()

// Résultat : { ok: 1, dropped: "librairie_en_ligne" }

📋 Récapitulatif des Commandes

Commandes de Gestion

Commande Description

show dbs Liste toutes les bases de données

use nom_db Crée/bascule vers une base

db Affiche la base active

show collections Liste toutes les collections

db.collection.drop() Supprime une collection

db.dropDatabase() Supprime la base active

Commandes CRUD

Opération Commande Exemple

CREATE insertOne() db.livres.insertOne({ titre: "..." })

insertMany() db.livres.insertMany([{...}, {...}])

READ find() db.livres.find({ prix: { $lt: 20 } })

findOne() db.livres.findOne({ titre: "1984" })

countDocuments() db.livres.countDocuments()

UPDATE updateOne() db.livres.updateOne({...}, { $set: {...} })

updateMany() db.livres.updateMany({...}, { $inc: {...} })

DELETE deleteOne() db.livres.deleteOne({ titre: "..." })

deleteMany() db.livres.deleteMany({ stock: { $lt: 5 } })

Opérateurs de Mise à Jour

Opérateur Usage Exemple

$set Modifier/Ajouter un champ { $set: { prix: 9.99 } }

$unset Supprimer un champ { $unset: { promo: "" } }

$inc Incrémenter/Décrémenter { $inc: { stock: -5 } }

$mul Multiplier { $mul: { prix: 0.9 } }

$push Ajouter à un tableau { $push: { tags: "nouveau" } }

$pull Retirer d’un tableau { $pull: { tags: "ancien" } }

Opérateurs de Requête

Opérateur Signification Exemple

$lt < { prix: { $lt: 15 } }

$lte <= { prix: { $lte: 15 } }

$gt > { annee: { $gt: 2000 } }

$gte >= { stock: { $gte: 20 } }

$ne != { genre: { $ne: "Fantasy" } }

$in Dans une liste { genre: { $in: ["Fantasy", "SF"] } }

$or OU logique { $or: [{...}, {...}] }

$and ET logique { $and: [{...}, {...}] }

$all Tous les éléments { tags: { $all: ["fantasy", "épique"] } }

🎯 Livrables Attendus

À la fin du TP, vous devez avoir :

✅ Une base de données librairie_en_ligne créée

✅ 3 collections : livres , clients , commandes

✅ Au moins 5 livres dans la collection livres

✅ Au moins 3 clients dans la collection clients

✅ Au moins 1 commande enregistrée

✅ Avoir pratiqué toutes les opérations CRUD

✅ Avoir utilisé au moins 5 opérateurs différents (inc, pull, gt, etc.)set, push, lt,

❓ Questions de Réflexion

1. Quelle est la principale différence entre SQL et MongoDB ?

SQL : Schéma rigide, tables, relations avec clés étrangères

MongoDB : Schéma flexible, collections, documents imbriqués

2. Quand utiliser updateOne() vs updateMany() ?

updateOne() : Modifier UN SEUL document (même si plusieurs
correspondent)

updateMany() : Modifier TOUS les documents qui correspondent

3. Pourquoi utiliser $inc au lieu de récupérer, calculer, puis mettre à jour ?

$inc est atomique : évite les problèmes de concurrence (race conditions)

4. Quelle est la différence entre deleteMany({}) et drop() ?

deleteMany({}) : Supprime tous les documents, mais garde la collection

drop() : Supprime la collection entière (structure + données)

Bon courage ! 🎉

