
TP - Système de Gestion Utilisateurs avec
PostgreSQL et Node.js

Rôles, Permissions et Authentification

IUT Nord Franche-Comté

Objectif: Créer un système complet de gestion utilisateurs avec authentification, rôles et permissions

📋 Contexte

Vous êtes développeur dans une ESN et devez créer le backend d'un système de gestion d'utilisateurs

pour une application web. Le système doit gérer l'authentification, les rôles, les permissions et garder
un historique des connexions.

🎯 Objectifs d'Apprentissage

À la fin de ce TP, vous saurez:

✅ Modéliser une base de données avec relations Many-to-Many

✅ Créer des tables avec contraintes et relations

✅ Implémenter des transactions SQL
✅ Utiliser la librairie pg avec Node.js

✅ Créer une API REST avec Express
✅ Gérer l'authentification avec tokens

✅ Implémenter un système de permissions

Partie 1 : Mise en Place de la Base de Données

Exercice 1.1 : Créer la Base de Données

Se connecter à PostgreSQL

psql -U postgres

Créer la base de données

CREATE DATABASE gestion_utilisateurs;

Se connecter à la base

\c gestion_utilisateurs

Exercice 1.2 : Créer les Tables Principales

📝 Task 1: Créez la table utilisateurs

CREATE TABLE utilisateurs (

 -- À COMPLÉTER

 -- Colonnes nécessaires:

 -- - id (auto-incrémenté, clé primaire)

 -- - email (unique, obligatoire, format email)

 -- - password_hash (obligatoire)

 -- - nom (optionnel)

 -- - prenom (optionnel)

 -- - actif (booléen, défaut: true)

 -- - date_creation (timestamp, défaut: maintenant)

 -- - date_modification (timestamp, défaut: maintenant)

);

-- Index pour recherche rapide

CREATE INDEX idx_utilisateurs_email ON utilisateurs(email);

CREATE INDEX idx_utilisateurs_actif ON utilisateurs(actif);

💡 Indice: Utilisez SERIAL pour l'auto-incrémentation, UNIQUE pour éviter les doublons d'email, et

CHECK pour valider le format email.

📝 Task 2: Créez les tables roles et permissions

CREATE TABLE roles (

 -- À COMPLÉTER

 -- id, nom (unique), description, date_creation

);

CREATE TABLE permissions (

 -- À COMPLÉTER

 -- id, nom (unique), ressource, action, description

 -- BONUS: Ajoutez une contrainte UNIQUE sur (ressource, action)

);

Exercice 1.3 : Tables d'Association (Many-to-Many)

📝 Task 3: Créez les tables d'association pour gérer les relations N-N

-- Table association utilisateur_roles

CREATE TABLE utilisateur_roles (

 -- À COMPLÉTER

 -- utilisateur_id (FK vers utilisateurs)

 -- role_id (FK vers roles)

 -- date_assignation

 -- Clé primaire composite

 -- ON DELETE CASCADE

);

-- Table association role_permissions

CREATE TABLE role_permissions (

 -- À COMPLÉTER

 -- role_id (FK vers roles)

 -- permission_id (FK vers permissions)

 -- Clé primaire composite

 -- ON DELETE CASCADE

);

Exercice 1.4 : Tables Sessions et Logs

📝 Task 4: Créez les tables pour gérer les sessions et les logs

CREATE TABLE sessions (

 -- À COMPLÉTER

 -- id, utilisateur_id (FK), token (unique),

 -- date_creation, date_expiration, actif

);

CREATE TABLE logs_connexion (

 -- À COMPLÉTER

 -- id, utilisateur_id (FK nullable), email_tentative,

 -- date_heure, adresse_ip, user_agent, succes, message

);

💡 Pourquoi utilisateur_id est nullable dans

logs_connexion?

Pour logger même les tentatives avec des emails
invalides!

Exercice 1.5 : Données de Test

📝 Task 5: Insérez des données de test

Exercice 1.6 : Fonction Stockée

-- Insérer des rôles

INSERT INTO roles (nom, description) VALUES

 ('admin', 'Administrateur avec tous les droits'),

 ('moderator', 'Modérateur de contenu'),

 ('user', 'Utilisateur standard');

-- Insérer des permissions

INSERT INTO permissions (nom, ressource, action, description) VALUES

 ('read_users', 'users', 'read', 'Lire les utilisateurs'),

 ('write_users', 'users', 'write', 'Créer/modifier des utilisateurs'),

 ('delete_users', 'users', 'delete', 'Supprimer des utilisateurs'),

 ('read_posts', 'posts', 'read', 'Lire les posts'),

 ('write_posts', 'posts', 'write', 'Créer/modifier des posts'),

 ('delete_posts', 'posts', 'delete', 'Supprimer des posts');

-- À VOUS: Associez les permissions aux rôles

-- Admin: toutes les permissions

-- Moderator: read_users, read_posts, write_posts, delete_posts

-- User: read_users, read_posts, write_posts

INSERT INTO role_permissions (role_id, permission_id) VALUES

 -- À COMPLÉTER

 -- Utilisez des sous-requêtes: (SELECT id FROM roles WHERE nom = 'adm

📝 Task 6: Créez une fonction pour vérifier si un utilisateur a une permission

CREATE OR REPLACE FUNCTION utilisateur_a_permission(

 p_utilisateur_id INT,

 p_ressource VARCHAR,

 p_action VARCHAR

)

RETURNS BOOLEAN AS $$

BEGIN

 -- À COMPLÉTER

 -- Retournez TRUE si l'utilisateur a la permission

 -- Vérifiez que l'utilisateur est actif

 -- Faites les JOINs nécessaires

END;

$$ LANGUAGE plpgsql;

Partie 2 : Requêtes SQL Avancées

Exercice 2.1 : Requêtes de Lecture

📝 Task 7: Écrivez une requête pour récupérer un utilisateur avec tous ses rôles

-- Utilisez array_agg pour agréger les rôles dans un tableau

SELECT

 -- À COMPLÉTER

FROM utilisateurs u

-- À COMPLÉTER (JOINs)

WHERE u.id = 1

GROUP BY u.id;

📝 Task 8: Récupérez toutes les permissions d'un utilisateur

SELECT DISTINCT

 u.id AS utilisateur_id,

 u.email,

 p.nom AS permission,

 p.ressource,

 p.action

FROM utilisateurs u

-- À COMPLÉTER (plusieurs JOINs nécessaires)

WHERE u.id = 1

ORDER BY p.ressource, p.action;

Exercice 2.2 : Statistiques et Agrégations

📝 Task 9: Comptez le nombre d'utilisateurs par rôle

SELECT

 -- À COMPLÉTER

 -- Nom du rôle et nombre d'utilisateurs

FROM roles r

LEFT JOIN -- À COMPLÉTER

GROUP BY -- À COMPLÉTER

ORDER BY nombre_utilisateurs DESC;

📝 Task 10 (CHALLENGE): Trouvez les utilisateurs qui ont le rôle 'admin' ET 'moderator'

-- Indice: Utilisez HAVING COUNT(DISTINCT ...) = 2

SELECT

 u.id,

 u.email,

 array_agg(r.nom) AS roles

FROM utilisateurs u

-- À COMPLÉTER

WHERE r.nom IN ('admin', 'moderator')

GROUP BY u.id, u.email

HAVING -- À COMPLÉTER

Exercice 2.3 : Logs et Historique

📝 Task 11: Comptez les tentatives de connexion échouées des 7 derniers jours

SELECT

 DATE(date_heure) AS jour,

 COUNT(*) AS tentatives_echouees

FROM logs_connexion

WHERE succes = false

 AND date_heure >= CURRENT_DATE - INTERVAL '7 days'

GROUP BY DATE(date_heure)

ORDER BY jour DESC;

Partie 3 : Backend Node.js avec Express

Exercice 3.1 : Setup du Projet

mkdir gestion-utilisateurs

cd gestion-utilisateurs

npm init -y

Installer les dépendances

npm install express pg dotenv bcrypt uuid

Créer la structure

mkdir -p database routes middleware

touch .env index.js

touch database/db.js

touch routes/authRoutes.js

touch middleware/auth.js

Fichier .env :

DB_USER=postgres

DB_HOST=localhost

DB_NAME=gestion_utilisateurs

DB_PASSWORD=votre_mot_de_passe

DB_PORT=5432

PORT=3000

Exercice 3.2 : Connexion à PostgreSQL

📝 Task 12: Complétez database/db.js

const { Pool } = require('pg');

require('dotenv').config();

const pool = new Pool({

 // À COMPLÉTER

 // user, host, database, password, port

});

pool.on('connect', () => {

 console.log('✅ Connecté à PostgreSQL');

});

pool.on('error', (err) => {

 console.error('❌ Erreur PostgreSQL:', err);

});

module.exports = pool;

Exercice 3.3 : Serveur Express

📝 Task 13: Créez le serveur dans index.js

const express = require('express');

const pool = require('./database/db');

const authRoutes = require('./routes/authRoutes');

const app = express();

const PORT = process.env.PORT || 3000;

// Middleware

app.use(express.json());

// Routes

app.use('/api/auth', authRoutes);

// Health check

app.get('/api/health', async (req, res) => {

 // À COMPLÉTER

 // Testez la connexion avec SELECT NOW()

});

app.listen(PORT, () => {

 console.log(`🚀 Serveur démarré sur http://localhost:${PORT}`);

});

Exercice 3.4 : Inscription (Register)

📝 Task 14: Implémentez la route POST /api/auth/register dans routes/authRoutes.js

Étapes:

1. Valider que email et password sont fournis
2. Vérifier que l'email n'existe pas déjà

3. Hasher le mot de passe avec bcrypt (salt rounds: 10)
4. Insérer l'utilisateur (BEGIN transaction)

5. Assigner le rôle "user" par défaut

6. COMMIT la transaction
7. Retourner l'utilisateur créé (sans le password_hash!)

const express = require('express');

const router = express.Router();

const pool = require('../database/db');

const bcrypt = require('bcrypt');

router.post('/register', async (req, res) => {

 const { email, password, nom, prenom } = req.body;

 // 1. Validation

 if (!email || !password) {

 // À COMPLÉTER

 }

 const client = await pool.connect();

 try {

 await client.query('BEGIN');

 // 2. Vérifier si email existe

 const checkUser = await client.query(

 // À COMPLÉTER

);

 if (checkUser.rows.length > 0) {

 // À COMPLÉTER

 }

 // 3. Hasher le mot de passe

 const passwordHash = await bcrypt.hash(password, 10);

 // 4. Insérer l'utilisateur

 const result = await client.query(

 // À COMPLÉTER

 // RETURNING id, email, nom, prenom, date_creation

);

 const newUser = result.rows[0];

 // 5. Assigner le rôle "user"

 await client.query(

 // À COMPLÉTER

 // Sous-requête: SELECT id FROM roles WHERE nom = 'user'

);

 await client.query('COMMIT');

 res.status(201).json({

 message: 'Utilisateur créé avec succès',

 user: newUser

 });

 } catch (error) {

 await client.query('ROLLBACK');

 console.error('Erreur création utilisateur:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 } finally {

 client.release();

 }

});

module.exports = router;

Exercice 3.5 : Connexion (Login)

📝 Task 15 (CHALLENGE): Implémentez POST /api/auth/login

Étapes:

1. Récupérer l'utilisateur par email
2. Vérifier que l'utilisateur existe et est actif

3. Comparer le mot de passe avec bcrypt.compare()

4. Générer un token (UUID v4)
5. Créer une session (expiration: 24h)

6. Logger la tentative de connexion (réussie ou échouée)
7. Retourner le token et les infos utilisateur

const { v4: uuidv4 } = require('uuid');

router.post('/login', async (req, res) => {

 const { email, password } = req.body;

 const client = await pool.connect();

 try {

 await client.query('BEGIN');

 // 1. Récupérer l'utilisateur

 const userResult = await client.query(

 // À COMPLÉTER

);

 if (userResult.rows.length === 0) {

 // Logger l'échec

 await client.query(

 // À COMPLÉTER: INSERT INTO logs_connexion

);

 await client.query('COMMIT');

 return res.status(401).json({ error: 'Email ou mot de passe i

 }

 const user = userResult.rows[0];

 // 2. Vérifier si actif

 if (!user.actif) {

 // À COMPLÉTER

 }

 // 3. Vérifier le mot de passe

 const passwordMatch = await bcrypt.compare(password, user.passwor

 if (!passwordMatch) {

 // À COMPLÉTER

 }

 // 4. Générer token

 const token = uuidv4();

 const expiresAt = new Date();

 expiresAt.setHours(expiresAt.getHours() + 24);

 // 5. Créer session

 await client.query(

Exercice 3.6 : Middleware d'Authentification

📝 Task 16: Créez le middleware dans middleware/auth.js

const pool = require('../database/db');

async function requireAuth(req, res, next) {

 const token = req.headers['authorization'];

 if (!token) {

 // À COMPLÉTER

 // À COMPLÉTER

);

 // 6. Logger succès

 await client.query(

 // À COMPLÉTER

);

 await client.query('COMMIT');

 res.json({

 message: 'Connexion réussie',

 token: token,

 user: {

 id: user.id,

 email: user.email,

 nom: user.nom,

 prenom: user.prenom

 },

 expiresAt: expiresAt

 });

 } catch (error) {

 await client.query('ROLLBACK');

 console.error('Erreur login:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 } finally {

 client.release();

 }

});

 }

 try {

 // Vérifier que le token est valide

 const result = await pool.query(

 // À COMPLÉTER

 // JOIN avec utilisateurs

 // Vérifier: actif, date_expiration, session active

);

 if (result.rows.length === 0) {

 // À COMPLÉTER

 }

 req.user = result.rows[0];

 next();

 } catch (error) {

 console.error('Erreur middleware auth:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

}

module.exports = { requireAuth };

Exercice 3.7 : Route Protégée - Profil

📝 Task 17: Ajoutez une route pour récupérer le profil de l'utilisateur connecté

const { requireAuth } = require('../middleware/auth');

// GET /api/auth/profile

router.get('/profile', requireAuth, async (req, res) => {

 try {

 // Récupérer l'utilisateur avec ses rôles

 const result = await pool.query(

 // À COMPLÉTER

 // Utilisez array_agg pour les rôles

);

 res.json({ user: result.rows[0] });

 } catch (error) {

 console.error('Erreur profil:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

});

Exercice 3.8 : CHALLENGE - Middleware de Permissions

📝 Task 18 (BONUS): Créez un middleware pour vérifier les permissions

Utilisation:

router.delete('/users/:id',

 requireAuth,

 requirePermission('users', 'delete'),

 async (req, res) => {

 // Supprimer l'utilisateur

// Dans middleware/auth.js

function requirePermission(ressource, action) {

 return async (req, res, next) => {

 try {

 const result = await pool.query(

 'SELECT utilisateur_a_permission($1, $2, $3) AS a_permiss

 [req.user.utilisateur_id, ressource, action]

);

 if (!result.rows[0].a_permission) {

 return res.status(403).json({ error: 'Permission refusée'

 }

 next();

 } catch (error) {

 console.error('Erreur vérification permission:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

 };

}

module.exports = { requireAuth, requirePermission };

 }

);

Exercice 3.9 : CRUD Complet - Lire les Utilisateurs

📝 Task 19: Implémentez GET /api/users pour lister les utilisateurs avec pagination

Exercice 3.10 : CRUD - Mettre à Jour un Utilisateur

📝 Task 20: Implémentez PUT /api/users/:id pour modifier un utilisateur

// Dans routes/userRoutes.js

const express = require('express');

const router = express.Router();

const pool = require('../database/db');

const { requireAuth, requirePermission } = require('../middleware/auth');

// GET /api/users?page=1&limit=10

router.get('/',

 requireAuth,

 requirePermission('users', 'read'),

 async (req, res) => {

 const page = parseInt(req.query.page) || 1;

 const limit = parseInt(req.query.limit) || 10;

 const offset = (page - 1) * limit;

 try {

 // À COMPLÉTER

 // 1. Compter le total d'utilisateurs

 // 2. Récupérer les utilisateurs avec leurs rôles (array_agg)

 // 3. Utiliser LIMIT et OFFSET pour la pagination

 // 4. Retourner users et pagination info

 } catch (error) {

 console.error('Erreur liste utilisateurs:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

 }

);

module.exports = router;

Exercice 3.11 : CRUD - Supprimer un Utilisateur

📝 Task 21: Implémentez DELETE /api/users/:id pour supprimer un utilisateur

⚠️ Important: Un utilisateur ne peut pas se supprimer lui-même!

// PUT /api/users/:id

router.put('/:id',

 requireAuth,

 requirePermission('users', 'write'),

 async (req, res) => {

 const { id } = req.params;

 const { nom, prenom, actif } = req.body;

 try {

 const result = await pool.query(

 // À COMPLÉTER

 // UPDATE utilisateurs

 // SET nom = $1, prenom = $2, actif = $3, date_modificati

 // WHERE id = $4

 // RETURNING id, email, nom, prenom, actif, date_modifica

);

 if (result.rows.length === 0) {

 return res.status(404).json({ error: 'Utilisateur non tro

 }

 res.json({

 message: 'Utilisateur mis à jour',

 user: result.rows[0]

 });

 } catch (error) {

 console.error('Erreur mise à jour utilisateur:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

 }

);

// DELETE /api/users/:id

router.delete('/:id',

 requireAuth,

Exercice 3.12 : Utiliser la Fonction Stockée

📝 Task 22: Créez une route pour vérifier les permissions d'un utilisateur

 requirePermission('users', 'delete'),

 async (req, res) => {

 const { id } = req.params;

 // Empêcher l'auto-suppression

 if (parseInt(id) === req.user.utilisateur_id) {

 return res.status(400).json({

 error: 'Vous ne pouvez pas supprimer votre propre compte'

 });

 }

 try {

 const result = await pool.query(

 // À COMPLÉTER

 // DELETE FROM utilisateurs WHERE id = $1 RETURNING id, e

);

 if (result.rows.length === 0) {

 return res.status(404).json({ error: 'Utilisateur non tro

 }

 res.json({

 message: 'Utilisateur supprimé',

 user: result.rows[0]

 });

 } catch (error) {

 console.error('Erreur suppression utilisateur:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

 }

);

// GET /api/users/:id/permissions

router.get('/:id/permissions',

 requireAuth,

 async (req, res) => {

 const { id } = req.params;

Exercice 3.13 : Fonction est_token_valide()

📝 Task 23: Ajoutez une fonction stockée pour valider les tokens

D'abord, créez la fonction dans votre base de données:

CREATE OR REPLACE FUNCTION est_token_valide(p_token VARCHAR)

RETURNS BOOLEAN AS $$

BEGIN

 RETURN EXISTS (

 SELECT 1

 FROM sessions s

 INNER JOIN utilisateurs u ON s.utilisateur_id = u.id

 WHERE s.token = p_token

 AND s.actif = true

 AND s.date_expiration > CURRENT_TIMESTAMP

 AND u.actif = true

);

END;

$$ LANGUAGE plpgsql;

 try {

 // Récupérer toutes les permissions de l'utilisateur

 const result = await pool.query(

 // À COMPLÉTER

 // SELECT DISTINCT p.nom, p.ressource, p.action, p.descri

 // FROM utilisateurs u

 // INNER JOIN utilisateur_roles ...

 // WHERE u.id = $1

);

 res.json({

 utilisateur_id: parseInt(id),

 permissions: result.rows

 });

 } catch (error) {

 console.error('Erreur récupération permissions:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

 }

);

Puis, utilisez-la dans votre middleware (optionnel, amélioration):

Exercice 3.14 : Déconnexion (Logout)

// Alternative au middleware requireAuth

async function requireAuthWithFunction(req, res, next) {

 const token = req.headers['authorization'];

 if (!token) {

 return res.status(401).json({ error: 'Token manquant' });

 }

 try {

 // Utiliser la fonction stockée

 const validResult = await pool.query(

 'SELECT est_token_valide($1) AS valide',

 [token]

);

 if (!validResult.rows[0].valide) {

 return res.status(401).json({ error: 'Token invalide ou expir

 }

 // Récupérer les infos utilisateur

 const userResult = await pool.query(

 `SELECT s.utilisateur_id, u.email, u.nom, u.prenom

 FROM sessions s

 INNER JOIN utilisateurs u ON s.utilisateur_id = u.id

 WHERE s.token = $1`,

 [token]

);

 req.user = userResult.rows[0];

 next();

 } catch (error) {

 console.error('Erreur middleware auth:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

}

📝 Task 24: Implémentez POST /api/auth/logout

// POST /api/auth/logout

router.post('/logout', requireAuth, async (req, res) => {

 const token = req.headers['authorization'];

 try {

 // À COMPLÉTER

 // 1. Désactiver la session

 // 2. Logger la déconnexion dans logs_connexion

 } catch (error) {

 console.error('Erreur logout:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

});

Exercice 3.15 : Logs de Connexion

📝 Task 25: Récupérez l'historique des connexions d'un utilisateur

// GET /api/auth/logs

router.get('/logs', requireAuth, async (req, res) => {

 try {

 const result = await pool.query(

 // À COMPLÉTER

 // SELECT * FROM logs_connexion

 // WHERE utilisateur_id = $1

 // ORDER BY date_heure DESC

 // LIMIT 50

);

 res.json({ logs: result.rows });

 } catch (error) {

 console.error('Erreur logs:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

});

N'oubliez pas: Dans index.js , montez les routes utilisateurs:

const userRoutes = require('./routes/userRoutes');

app.use('/api/users', userRoutes);

Tests avec Postman / cURL

1. Inscription

curl -X POST http://localhost:3000/api/auth/register \

 -H "Content-Type: application/json" \

 -d '{

 "email": "alice@example.com",

 "password": "password123",

 "nom": "Dupont",

 "prenom": "Alice"

 }'

2. Connexion

curl -X POST http://localhost:3000/api/auth/login \

 -H "Content-Type: application/json" \

 -d '{

 "email": "alice@example.com",

 "password": "password123"

 }'

Réponse: Copiez le token retourné

3. Profil (avec token)

curl -X GET http://localhost:3000/api/auth/profile \

 -H "Authorization: VOTRE_TOKEN_ICI"

Livrables Attendus

À la fin du TP, vous devez avoir:

Base de données:

✅ Base de données complète avec 7 tables
✅ Fonction stockée utilisateur_a_permission()

✅ Fonction stockée est_token_valide() (optionnel)

API REST complète:

✅ Route POST /api/auth/register - Création utilisateur avec transactions

✅ Route POST /api/auth/login - Authentification avec token UUID

✅ Route POST /api/auth/logout - Déconnexion

✅ Route GET /api/auth/profile - Profil utilisateur

✅ Route GET /api/auth/logs - Historique des connexions

CRUD Utilisateurs:

✅ Route GET /api/users - Liste avec pagination

✅ Route GET /api/users/:id - Détails d'un utilisateur

✅ Route PUT /api/users/:id - Mise à jour

✅ Route DELETE /api/users/:id - Suppression (avec protection auto-suppression)

✅ Route GET /api/users/:id/permissions - Permissions d'un utilisateur

Middleware et Sécurité:

✅ Middleware d'authentification (requireAuth)

✅ Middleware de permissions (requirePermission)

✅ Logs de connexion (réussies et échouées)

✅ Hachage des mots de passe avec bcrypt
✅ Gestion des erreurs et transactions SQL

💡 Pour Aller Plus Loin : Architecture RCS (Router-
Controller-Service)

Observation Importante

Dans ce TP, nous avons placé toute la logique métier directement dans les routes. C'est une approche

simple et fonctionnelle pour débuter, mais ce n'est pas la meilleure pratique pour des applications

réelles.

Problèmes de l'approche actuelle :

❌ Routes trop volumineuses et difficiles à maintenir

❌ Logique métier mélangée avec la logique de routage
❌ Code difficile à tester unitairement

❌ Duplication de code entre différentes routes
❌ Impossible de réutiliser la logique dans d'autres contextes

L'Architecture RCS

Vous avez appris l'approche RCS (Router-Controller-Service) en cours (voir week_3b). Cette

architecture sépare les responsabilités en 3 couches :

┌─────────────────┐

│ ROUTER │ → Définit les routes et les méthodes HTTP

│ (routes/) │ → Gère les paramètres de requête (req, res)

└────────┬────────┘

 │

┌────────▼────────┐

│ CONTROLLER │ → Valide les données d'entrée

│ (controllers/) │ → Appelle les services appropriés

│ │ → Formate les réponses HTTP

└────────┬────────┘

 │

┌────────▼────────┐

│ SERVICE │ → Contient la logique métier

│ (services/) │ → Interagit avec la base de données

│ │ → Réutilisable et testable

└─────────────────┘

🎯 Exercice Bonus : Refactorisation en Architecture RCS

Objectif : Refactorisez votre code pour suivre l'architecture RCS.

Étape 1 : Créer la structure de dossiers

mkdir controllers services

touch controllers/authController.js

touch controllers/userController.js

touch services/authService.js

touch services/userService.js

Étape 2 : Exemple de refactorisation - Route Register

Avant (tout dans la route) :

Après (Architecture RCS) :

// routes/authRoutes.js

const authController = require('../controllers/authController');

router.post('/register', authController.register);

router.post('/login', authController.login);

router.post('/logout', requireAuth, authController.logout);

router.get('/profile', requireAuth, authController.getProfile);

// controllers/authController.js

const authService = require('../services/authService');

exports.register = async (req, res) => {

 try {

 const { email, password, nom, prenom } = req.body;

 // Validation

 if (!email || !password) {

// routes/authRoutes.js

router.post('/register', async (req, res) => {

 const { email, password, nom, prenom } = req.body;

 if (!email || !password) {

 return res.status(400).json({ error: 'Email et mot de passe requi

 }

 const client = await pool.connect();

 try {

 await client.query('BEGIN');

 const checkUser = await client.query(

 'SELECT id FROM utilisateurs WHERE email = $1',

 [email]

);

 // ... 50 lignes de logique métier ...

 } catch (error) {

 // ...

 }

});

 return res.status(400).json({

 error: 'Email et mot de passe requis'

 });

 }

 // Appel au service

 const user = await authService.registerUser({

 email,

 password,

 nom,

 prenom

 });

 res.status(201).json({

 message: 'Utilisateur créé avec succès',

 user

 });

 } catch (error) {

 if (error.code === 'EMAIL_EXISTS') {

 return res.status(409).json({ error: error.message });

 }

 console.error('Erreur création utilisateur:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

};

exports.login = async (req, res) => {

 try {

 const { email, password } = req.body;

 if (!email || !password) {

 return res.status(400).json({

 error: 'Email et mot de passe requis'

 });

 }

 const result = await authService.login(email, password);

 res.json(result);

 } catch (error) {

 if (error.code === 'INVALID_CREDENTIALS') {

 return res.status(401).json({ error: error.message });

 }

 if (error.code === 'ACCOUNT_INACTIVE') {

 return res.status(403).json({ error: error.message });

 }

 console.error('Erreur login:', error);

 res.status(500).json({ error: 'Erreur serveur' });

 }

};

// services/authService.js

const pool = require('../database/db');

const bcrypt = require('bcrypt');

const { v4: uuidv4 } = require('uuid');

exports.registerUser = async ({ email, password, nom, prenom }) => {

 const client = await pool.connect();

 try {

 await client.query('BEGIN');

 // Vérifier si l'email existe

 const checkUser = await client.query(

 'SELECT id FROM utilisateurs WHERE email = $1',

 [email]

);

 if (checkUser.rows.length > 0) {

 await client.query('ROLLBACK');

 const error = new Error('Email déjà utilisé');

 error.code = 'EMAIL_EXISTS';

 throw error;

 }

 // Hasher le mot de passe

 const passwordHash = await bcrypt.hash(password, 10);

 // Insérer l'utilisateur

 const result = await client.query(

 `INSERT INTO utilisateurs (email, password_hash, nom, prenom)

 VALUES ($1, $2, $3, $4)

 RETURNING id, email, nom, prenom, date_creation`,

 [email, passwordHash, nom, prenom]

);

 const newUser = result.rows[0];

 // Assigner le rôle "user"

 await client.query(

 `INSERT INTO utilisateur_roles (utilisateur_id, role_id)

 SELECT $1, id FROM roles WHERE nom = 'user'`,

 [newUser.id]

);

 await client.query('COMMIT');

 return newUser;

 } catch (error) {

 await client.query('ROLLBACK');

 throw error;

 } finally {

 client.release();

 }

};

exports.login = async (email, password) => {

 const client = await pool.connect();

 try {

 await client.query('BEGIN');

 // Récupérer l'utilisateur

 const userResult = await client.query(

 `SELECT id, email, password_hash, nom, prenom, actif

 FROM utilisateurs WHERE email = $1`,

 [email]

);

 if (userResult.rows.length === 0) {

 await logFailedLogin(client, email, null, 'Email inexistant')

 await client.query('COMMIT');

 const error = new Error('Email ou mot de passe incorrect');

 error.code = 'INVALID_CREDENTIALS';

 throw error;

 }

 const user = userResult.rows[0];

 // Vérifier si actif

 if (!user.actif) {

 await logFailedLogin(client, email, user.id, 'Compte désactiv

 await client.query('COMMIT');

 const error = new Error('Compte désactivé');

 error.code = 'ACCOUNT_INACTIVE';

 throw error;

 }

 // Vérifier le mot de passe

 const passwordMatch = await bcrypt.compare(password, user.passwor

 if (!passwordMatch) {

 await logFailedLogin(client, email, user.id, 'Mot de passe in

 await client.query('COMMIT');

 const error = new Error('Email ou mot de passe incorrect');

 error.code = 'INVALID_CREDENTIALS';

 throw error;

 }

 // Générer token

 const token = uuidv4();

 const expiresAt = new Date();

 expiresAt.setHours(expiresAt.getHours() + 24);

 // Créer session

 await client.query(

 `INSERT INTO sessions (utilisateur_id, token, date_expiration

 VALUES ($1, $2, $3)`,

 [user.id, token, expiresAt]

);

 // Logger succès

 await client.query(

 `INSERT INTO logs_connexion

 (utilisateur_id, email_tentative, succes, message)

 VALUES ($1, $2, true, 'Connexion réussie')`,

 [user.id, email]

);

 await client.query('COMMIT');

Avantages de l'Architecture RCS

✅ Séparation des responsabilités : Chaque couche a un rôle clair

✅ Testabilité : Les services peuvent être testés indépendamment

✅ Réutilisabilité : La logique métier peut être utilisée ailleurs (CLI, workers, etc.)

✅ Maintenabilité : Code plus lisible et organisé

✅ Évolutivité : Facile d'ajouter de nouvelles fonctionnalités

✅ Gestion d'erreurs : Erreurs personnalisées avec codes d'erreur

🎯 Votre Mission

 return {

 message: 'Connexion réussie',

 token,

 user: {

 id: user.id,

 email: user.email,

 nom: user.nom,

 prenom: user.prenom

 },

 expiresAt

 };

 } catch (error) {

 await client.query('ROLLBACK');

 throw error;

 } finally {

 client.release();

 }

};

// Fonction helper privée

async function logFailedLogin(client, email, userId, message) {

 await client.query(

 `INSERT INTO logs_connexion

 (utilisateur_id, email_tentative, succes, message)

 VALUES ($1, $2, false, $3)`,

 [userId, email, message]

);

}

Refactorisez tout votre code pour suivre l'architecture RCS :

1. authService.js : registerUser() , login() , logout() , getUserProfile() ,

getUserLogs()

2. userService.js : getAllUsers() , getUserById() , updateUser() , deleteUser() ,

getUserPermissions()

3. authController.js : Tous les contrôleurs d'authentification

4. userController.js : Tous les contrôleurs de gestion utilisateurs

Critères de validation :

✅ Aucune logique métier dans les routes
✅ Les contrôleurs ne font que valider et appeler les services

✅ Tous les appels à la base de données sont dans les services

✅ Gestion d'erreurs avec codes d'erreur personnalisés
✅ Code réutilisable et testable

Bon courage! 🚀

