TP - Systeme de Gestion Utilisateurs avec
PostgreSQL et Node.js

Roles, Permissions et Authentification

IUT Nord Franche-Comté
Objectif: Créer un systéme complet de gestion utilisateurs avec authentification, réles et permissions

Contexte

Vous étes développeur dans une ESN et devez créer le backend d'un systeme de gestion d'utilisateurs
pour une application web. Le systeme doit gérer l'authentification, les roles, les permissions et garder

un historique des connexions.

Objectifs d’Apprentissage

Ala fin de ce TP, vous saurez:

. Modéliser une base de données avec relations Many-to-Many
. Créer des tables avec contraintes et relations

. Implémenter des transactions SQL

o [74 Utiliser lalibrairie pg avec Node.js

. Créer une API REST avec Express

. Gérer l'authentification avec tokens

Implémenter un systéme de permissions

Partie 1: Mise en Place de la Base de Données

Exercice 1.1: Créer la Base de Données

Se connecter a PostgreSQL

psgl -U postgres

Créer la base de données

CREATE DATABASE gestion utilisateurs;

Se connecter a la base

\c gestion utilisateurs

Exercice 1.2 : Créer les Tables Principales

Task 1: Créezlatable utilisateurs

CREATE TABLE utilisateurs (
-- A COMPLETER
-- Colonnes nécessaires:
-- - id (auto-incrémenté, clé primaire)
-- - email (unique, obligatoire, format email)
-— - password hash (obligatoire)
-—- - nom (optionnel)
-— - prenom (optionnel)
-— - actif (booléen, défaut: true)
-- - date creation (timestamp, défaut: maintenant)

-- - date modification (timestamp, défaut: maintenant)

-- Index pour recherche rapide
CREATE INDEX idx utilisateurs email ON utilisateurs(email);
CREATE INDEX idx utilisateurs actif ON utilisateurs(actif);

Indice: Utilisez SERIAL pour l'auto-incrémentation, UNIQUE pour éviter les doublons demail, et

CHECK pour valider le format email.

Task 2: Créezles tables roles et permissions

CREATE TABLE roles (
-— A COMPLETER

-- 1d, nom (unique), description, date creation

CREATE TABLE permissions (
-- A COMPLETER

-- 1id, nom (unique), ressource, action, description

-— BONUS: Ajoutez une contrainte UNIQUE sur (ressource,

action)

Exercice 1.3 : Tables d’Association (Many-to-Many)

Task 3: Créez les tables d'association pour gérer les relations N-N

-— Table association utilisateur roles
CREATE TABLE utilisateur roles (

-- A COMPLETER

-— utilisateur id (FK vers utilisateurs)

-— role id (FK vers roles)

-—- date assignation

-—- Clé primaire composite

—-— ON DELETE CASCADE

-— Table association role permissions
CREATE TABLE role permissions (
-- A COMPLETER
-- role id (FK vers roles)
-- permission id (FK vers permissions)
-—- Clé primaire composite

—-— ON DELETE CASCADE

Exercice 1.4 : Tables Sessions et Logs

Task 4: Créez les tables pour gérer les sessions et les logs

CREATE TABLE sessions (
-- A COMPLETER
-- 1d, utilisateur id (FK), token (unique),

-- date creation, date expiration, actif

CREATE TABLE logs connexion (
-- A COMPLETER

—-- 1id, utilisateur id (FK nullable), email tentative,

-—- date heure, adresse ip, user agent, succes, message
) ;
Pourquoi utilisateur_ id est nullable dans
logs_connexion?

Pour logger méme les tentatives avec des emails
invalides!

Exercice 1.5 : Données de Test

Task b: Insérez des données de test

—-— Insérer des rdles

INSERT INTO roles (nom, description) VALUES

("admin', 'Administrateur avec tous les droits'),
("moderator', 'Modérateur de contenu'),
("user', 'Utilisateur standard');

-— Insérer des permissions

INSERT INTO permissions (nom, ressource, action, description) VALUES

('read users', 'users', 'read', 'Lire les utilisateurs'),

('write users', 'users', 'write', 'Créer/modifier des utilisateurs'),
('delete users', 'users', 'delete', 'Supprimer des utilisateurs'),
('read posts', 'posts', 'read', 'Lire les posts'),

('write posts', 'posts', 'write', 'Créer/modifier des posts'),
('delete posts', 'posts', 'delete', 'Supprimer des posts');

-- A VOUS: Associez les permissions aux rdles
-— Admin: toutes les permissions
-- Moderator: read users, read posts, write posts, delete posts
—-—- User: read users, read posts, write posts
INSERT INTO role permissions (role id, permission id) VALUES
-- A COMPLETER
-—- Utilisez des sous-requétes: (SELECT id FROM roles WHERE nom = 'adn

Exercice 1.6 : Fonction Stockée

Task 6: Créez une fonction pour vérifier si un utilisateur a une permission

CREATE OR REPLACE FUNCTION utilisateur a permission (
p_utilisateur id INT,
p ressource VARCHAR,
p action VARCHAR

)
RETURNS BOOLEAN AS $$

BEGIN
-- A COMPLETER
-— Retournez TRUE si l'utilisateur a la permission
-- Vérifiez que l'utilisateur est actif
-- Faites les JOINs nécessaires
END;

$$ LANGUAGE plpgsqgl;

Partie 2 : Requétes SQL Avancées

Exercice 2.1: Requétes de Lecture

Task 7: Ecrivez une requéte pour récupérer un utilisateur avec tous ses roles

—-- Utilisez array agg pour agréger les rdles dans un tableau
SELECT
-- A COMPLETER
FROM utilisateurs u
-- A COMPLETER (JOINs)
WHERE u.id = 1
GROUP BY u.id;

Task 8: Récupérez toutes les permissions d'un utilisateur

SELECT DISTINCT
u.id AS utilisateur id,
u.email,
p.nom AS permission,
p.ressource,
p.action
FROM utilisateurs u
-- A COMPLETER (plusieurs JOINs nécessaires)

WHERE u.id = 1
ORDER BY p.ressource, p.action;

Exercice 2.2 : Statistiques et Agrégations

Task 9: Comptez le nombre d'utilisateurs par réle

SELECT
-- A COMPLETER
-— Nom du rdéle et nombre d'utilisateurs
FROM roles r
LEFT JOIN -- A COMPLETER
GROUP BY -- A COMPLETER
ORDER BY nombre utilisateurs DESC;

Task 10 (CHALLENGE): Trouvez les utilisateurs qui ont le role 'admin' ET 'moderator

-— Indice: Utilisez HAVING COUNT(DISTINCT ...) = 2
SELECT
u.id,
u.email,
array agg(r.nom) AS roles
FROM utilisateurs u
-- A COMPLETER

WHERE r.nom IN ('admin', 'moderator')
GROUP BY u.id, u.email
HAVING -- A COMPLETER

Exercice 2.3 : Logs et Historique

Task 11: Comptez les tentatives de connexion échouées des 7 derniers jours

SELECT
DATE (date heure) AS jour,
COUNT (*) AS tentatives echouees
FROM logs connexion
WHERE succes = false
AND date heure >= CURRENT DATE - INTERVAL '/ days'
GROUP BY DATE (date heure)
ORDER BY jour DESC;

Partie 3 : Backend Node.js avec Express

Exercice 3.1: Setup du Projet

mkdir gestion-utilisateurs
cd gestion-utilisateurs

npm init -y

Installer les dépendances

npm install express pg dotenv bcrypt uuid

Créer la structure

mkdir -p database routes middleware
touch .env index.js

touch database/db.]s

touch routes/authRoutes.js

touch middleware/auth.]s

Fichier .env:

DB USER=postgres

DB HOST=localhost

DB NAME=gestion utilisateurs
DB PASSWORD=votre mot de passe
DB PORT=5432

PORT=3000

Exercice 3.2 : Connexion a PostgreSQL

Task 12: Complétez database/db.js

const { Pool } = require('pg');
require ('dotenv') .config() ;
const pool = new Pool ({

// A COMPLETER
// user, host, database, password, port
P) s

pool.on ('connect', () => {
console.log('ﬂ' Connecté a PostgreSQL');
1)

pool.on('error', (err) => {
console.error(')(Erreur PostgreSQL:', err);

1)

module.exports = pool;

Exercice 3.3 : Serveur Express

Task 13: Créez le serveur dans index.js

const express = require('express');
const pool = require('./database/db');

const authRoutes = require('./routes/authRoutes'):;

const app = express|();
const PORT = process.env.PORT || 3000;

// Middleware

app.use (express.json());

// Routes
app.use ('/api/auth', authRoutes);

// Health check
app.get ('/api/health', async (req, res) => {
// A COMPLETER
// Testez la connexion avec SELECT NOW ()
})

app.listen (PORT, () => {
console.log(\ﬁf Serveur démarré sur http://localhost:${PORT} ") ;
1) ;

Exercice 3.4 : Inscription (Register)

Task 14: Implémentez laroute POST /api/auth/register dans routes/authRoutes. s

Etapes:

1. Valider que email et password sont fournis

2. Verifier que l'email n'existe pas déja

3. Hasher le mot de passe avec bcrypt (salt rounds: 10)
4. Insérer |'utilisateur (BEGIN transaction)

5. Assigner le role "user" par défaut

6. COMMIT la transaction

7. Retourner l'utilisateur créé (sans le password_hash!)

const express = require('express');
const router = express.Router();
const pool = require('../database/db');

const bcrypt = require ('bcrypt'):;

router.post ('/register', async (req, res) => {

const { email, password, nom, prenom } = reqg.body;

// 1. Validation
if (!'email || !password) {
// A COMPLETER

const client = await pool.connect () ;
try {
await client.query ('BEGIN') ;

// 2. Vérifier si email existe

const checkUser = await client.query (
// A COMPLETER

) ;

if (checkUser.rows.length > 0) {
// A COMPLETER

// 3. Hasher le mot de passe

const passwordHash = await bcrypt.hash (password, 10);

// 4. Insérer l'utilisateur
const result = await client.query(
// A COMPLETER
// RETURNING id, email, nom, prenom, date creation

const newUser = result.rows[0];

// 5. Assigner le rdle "user"
await client.query(

// A COMPLETER

// Sous-requéte: SELECT id FROM roles WHERE nom = 'user'
) ;

await client.query ('COMMIT') ;

res.status (201) .json ({
message: 'Utilisateur créé avec succes',
user: newUser

1)

} catch (error) {
await client.query ('ROLLBACK') ;
console.error ('Erreur création utilisateur:', error);
res.status (500) .json({ error: 'Erreur serveur' });

} finally {

client.release();

1)

module.exports = router;

Exercice 3.5 : Connexion (Login)

Task 15 (CHALLENGE): Implémentez POST /api/auth/login
Etapes:

1. Récupérer l'utilisateur par email

2. Vérifier que l'utilisateur existe et est actif

3. Comparer le mot de passe avec becrypt.compare()

4. Générer un token (UUID v4)

5. Créer une session (expiration: 24h)

B. Logger la tentative de connexion (réussie ou échouée)
7. Retourner le token et les infos utilisateur

const { v4: uuidv4d } = require('uuid');

router.post ('/login', async (reqg, res) => {
const { email, password } = reqg.body;
const client = await pool.connect () ;
try {

await client.query ('BEGIN') ;

// 1. Récupérer l1l'utilisateur
const userResult = await client.query(

// A COMPLETER
) ;

if (userResult.rows.length === 0) {
// Logger 1l'échec
await client.query(
// A COMPLETER: INSERT INTO logs connexion
) ;
await client.query ('COMMIT') ;

return res.status (401).Json({ error: 'Email ou mot de passe i

const user = userResult.rows[0];

// 2. Vérifier si actif
if (l'user.actif) {
// A COMPLETER

// 3. Vérifier le mot de passe

const passwordMatch = await bcrypt.compare (password, uUser.passwor

if (!passwordMatch) {
// A COMPLETER

// 4. Générer token
const token = uuidv4 () ;
const expiresAt = new Date();

expiresAt.setHours (expiresAt.getHours () + 24);

// 5. Créer session

await client.query(

// A COMPLETER
) ;

// 6. Logger succes
await client.query(

// A COMPLETER
) ;

await client.query ('COMMIT') ;

res.json ({
message: 'Connexion réussie',
token: token,
user: {
id: user.id,
email: user.email,
nom: user.nom,
prenom: user.prenom
}I
expiresAt: expiresAt
1)

} catch (error) {
await client.query ('ROLLBACK') ;
console.error ('Erreur login:', error);
res.status (500) .json({ error: 'Erreur serveur'
} finally {

client.release() ;

1)

Exercice 3.6 : Middleware d'’Authentification

Task 16: Créez le middleware dans middleware/auth. s

const pool = require('../database/db');

async function requireAuth (req, res, next) {

const token = reg.headers|['authorization'];

if ('token) {
// A COMPLETER

try |
// Vérifier que le token est valide
const result = await pool.query (
// A COMPLETER
// JOIN avec utilisateurs

// Vérifier: actif, date expiration, session active

) ;

if (result.rows.length === 0) {
// A COMPLETER

reg.user = result.rows[0];
next ();
} catch (error) {

console.error ('Erreur middleware auth:', error);

res.status (500) .json({ error: 'Erreur serveur' });

module.exports = { requireAuth };

Exercice 3.7 : Route Protégée - Profil

Task 17: Ajoutez une route pour recuperer le profil de l'utilisateur connecté

const { requireAuth } = require('../middleware/auth');

// GET /api/auth/profile
router.get ('/profile', requireAuth, async (req, res) => {
try |
// Récupérer l'utilisateur avec ses rdles
const result = await pool.query (
// A COMPLETER

// Utilisez array agg pour les rdles

) ;

res.json({ user: result.rows[0] });

} catch (error) {
console.error ('Erreur profil:', error);

res.status (500) .json({ error: 'Erreur serveur' });

Exercice 3.8 : CHALLENGE - Middleware de Permissions
Task 18 (BONUS): Créez un middleware pour vérifier les permissions

// Dans middleware/auth.js

function requirePermission (ressource, action) {

return async (req, res, next) => {
try {
const result = await pool.query (

'SELECT utilisateur a permission($1l, $2, $3) AS a permiss

[reg.user.utilisateur id, ressource, action]

) ;

if (!result.rows[0].a permission) {

return res.status (403) .json({ error: 'Permission refusée'

next () ;

} catch (error) {
console.error ('Erreur vérification permission:', error);

14

res.status (500) .json({ error: 'Erreur serveur' });

module.exports = { requireAuth, requirePermission };
Utilisation:

router.delete ('/users/:id",
requireAuth,
requirePermission('users', 'delete'),
async (reqg, res) => {

// Supprimer l'utilisateur

Exercice 3.9 : CRUD Complet - Lire les Utilisateurs

Task 19: Implémentez GET /api/users pour listerles utilisateurs avec pagination

// Dans routes/userRoutes.js

const express = require('express');
const router = express.Router();

const pool = require('../database/db");

const { requireAuth, requirePermission } = require('../middleware/auth');

// GET /api/users?page=1&limit=10
router.get ('/"',
requireAuth,

requirePermission ('users', 'read'),

async (req, res) => {

const page = parselnt (reg.query.page) || 1;

const limit = parselnt(req.query.limit) || 10;

const offset = (page - 1) * limit;

try |
// A COMPLETER
// 1. Compter le total d'utilisateurs
// 2. Récupérer les utilisateurs avec leurs rdles (array agg)
// 3. Utiliser LIMIT et OFFSET pour la pagination
// 4. Retourner users et pagination info

} catch (error) {
console.error ('Erreur liste utilisateurs:', error);

res.status (500) .json({ error: 'Erreur serveur' });

) ;

module.exports = router;

Exercice 3.10 : CRUD - Mettre a Jour un Utilisateur

Task 20: Implémentez PUT /api/users/:id pour modifier un utilisateur

// PUT /api/users/:id
router.put ('/:1id',
requireAuth,

requirePermission('users', 'write'),

async (req, res) => {
const { id } = reg.params;
const { nom, prenom, actif } = reqg.body;
try {
const result = await pool.query (

// A COMPLETER

// UPDATE utilisateurs

// SET nom = $1, prenom = $2, actif = $3, date modificati

// WHERE id = $4

// RETURNING id, email, nom, prenom, actif, date modifice
) ;

if (result.rows.length === 0) {

return res.status(404) .Json({ error: 'Utilisateur non trc

res.json ({
message: 'Utilisateur mis a jour',
user: result.rows[0]

)

} catch (error) {
console.error ('Erreur mise a jour utilisateur:', error);

res.status (500) .json({ error: 'Erreur serveur' });

Exercice 3.11 : CRUD - Supprimer un Utilisateur

Task 21: Implémentez DELETE /api/users/:1id pour supprimer un utilisateur

Important: Un utilisateur ne peut pas se supprimer lui-méme!

// DELETE /api/users/:id
router.delete('/:1d",

requireAuth,

requirePermission('users', 'delete'),
async (req, res) => {

const { id } = reg.params;

// Empécher 1'auto-suppression
if (parselnt(id) === reg.user.utilisateur id) {

return res.status (400) .Json ({

error: 'Vous ne pouvez pas supprimer votre propre compte'
}) g
}
try |
const result = await pool.query(
// A COMPLETER
// DELETE FROM utilisateurs WHERE id = $1 RETURNING id,
) ;
if (result.rows.length === 0) {

return res.status (404) .Json({ error: 'Utilisateur non trc

res.json ({
message: 'Utilisateur supprimé’,

user: result.rows[0]

)

} catch (error) {

console.error ('Erreur suppression utilisateur:',

res.status (500) .json({ error: 'Erreur serveur' });

Exercice 3.12 : Utiliser la Fonction Stockée

Task 22: Créez une route pour vérifier les permissions d'un utilisateur

// GET /api/users/:id/permissions
router.get ('/:id/permissions’',
requireAuth,
async (req, res) => {

const { id } = reg.params;

try {
// Récupérer toutes les permissions de 1l'utilisateur

const result = await pool.query (
// A COMPLETER
// SELECT DISTINCT p.nom, p.ressource, p.action, p.descri
// FROM utilisateurs u
// INNER JOIN utilisateur roles
// WHERE u.id = $1

res.json ({
utilisateur id: parselnt(id),
permissions: result.rows

1)

} catch (error) {
console.error ('Erreur récupération permissions:', error);

res.status (500) .json ({ error: 'Erreur serveur' });

Exercice 3.13 : Fonction est_token_valide()

Task 23: Ajoutez une fonction stockée pour valider les tokens

D'abord, créez la fonction dans votre base de données:

CREATE OR REPLACE FUNCTION est token valide (p token VARCHAR)
RETURNS BOOLEAN AS $$S

BEGIN
RETURN EXISTS (
SELECT 1
FROM sessions s
INNER JOIN utilisateurs u ON s.utilisateur id = u.id
WHERE s.token = p token
AND s.actif = true
AND s.date expiration > CURRENT TIMESTAMP
AND u.actif = true
) ;
END;

$$ LANGUAGE plpgsql;

Puis, utilisez-la dans votre middleware (optionnel, amélioration):

// Alternative au middleware requireAuth
async function requireAuthWithFunction (reqg, res, next) {

const token = reg.headers|['authorization'];

if (!'token) {

return res.status(401).json({ error: 'Token mangquant' });

try {
// Utiliser la fonction stockée
const validResult = await pool.query (
'SELECT est token valide($1) AS valide',
[token]
) ;

i1f (!'validResult.rows[0].valide) {

return res.status (401) .json({ error: 'Token invalide ou expir

// Récupérer les infos utilisateur

const userResult = await pool.query (
"SELECT s.utilisateur id, u.email, u.nom, u.prenom
FROM sessions s
INNER JOIN utilisateurs u ON s.utilisateur id = u.id
WHERE s.token = $1°,
[token]

) ;

reg.user = userResult.rows[0];

next () ;

} catch (error) {
console.error ('Erreur middleware auth:', error);

res.status (500) .json({ error: 'Erreur serveur' });

Exercice 3.14 : Déconnexion (Logout)

Task 24: Implémentez POST /api/auth/logout

// POST /api/auth/logout

router.post ('/logout', requireAuth, async (req, res) => {
const token = reg.headers|['authorization'];
try {

// A COMPLETER

// 1. Désactiver la session

// 2. Logger la déconnexion dans logs connexion

} catch (error) {
console.error ('Erreur logout:', error);

res.status (500) .json({ error: 'Erreur serveur'

1)

Exercice 3.15 : Logs de Connexion

Task 25: Récupérez I'historique des connexions d'un utilisateur

// GET /api/auth/logs

router.get ('/logs', requireAuth, async (req, res) => {
try {
const result = await pool.query (

// A COMPLETER
// SELECT * FROM logs connexion
// WHERE utilisateur id = $1
// ORDER BY date heure DESC
// LIMIT 50
) ;

res.json({ logs: result.rows });
} catch (error) {

console.error ('Erreur logs:', error);

res.status (500) .json ({ error: 'Erreur serveur'

1)

N'oubliez pas: Dans index.js, montezlesroutes utilisateurs:

const userRoutes = require('./routes/userRoutes');

app.use ('/api/users', userRoutes);

Tests avec Postman / cURL
1. Inscription

curl -X POST http://localhost:3000/api/auth/register \
-H "Content-Type: application/json" \

-d '{
"email": "alice(@example.com",
"password": "passwordl23",
"nom": "Dupont",

"prenom": "Alice"

} |

2. Connexion

curl -X POST http://localhost:3000/api/auth/login \
-H "Content-Type: application/json" \

_d'{
"email": "alice(@example.com",
"password": "passwordl23"

} |
Réponse: Copiezle token retourné

3. Profil (avec token)

curl -X GET http://localhost:3000/api/auth/profile \
-H "Authorization: VOTRE TOKEN ICI"

Livrables Attendus

A la fin du TP, vous devez avoir:

Base de données:

. Base de données compléte avec 7 tables
. Fonction stockée utilisateur a permission|()

. Fonction stockée est token valide () (optionnel)

API REST compléte:

. Route POST /api/auth/register -Création utilisateur avec transactions
. Route POST /api/auth/login - Authentification avec token UUID

. Route POST /api/auth/logout - Déconnexion

. Route GET /api/auth/profile - Profil utilisateur

. Route GET /api/auth/logs - Historique des connexions

CRUD Utilisateurs:

. Route GET /api/users - Liste avec pagination

. Route GET /api/users/:id - Détails d'un utilisateur

. Route PUT /api/users/:id - Mise ajour

. Route DELETE /api/users/:id - Suppression(avec protection auto-suppression)

. Route GET /api/users/:id/permissions -Permissions d'un utilisateur

Middleware et Sécurité:

. Middleware d'authentification(requireAuth)
. Middleware de permissions(requirePermission)
. Logs de connexion (réussies et échouées)

. Hachage des mots de passe avec bcrypt
Gestion des erreurs et transactions SQL

Pour Aller Plus Loin : Architecture RCS (Router-

Controller-Service)

Observation Importante

Dans ce TP, nous avons placé toute la logique métier directement dans les routes. C'est une approche
simple et fonctionnelle pour débuter, mais ce n'est pas la meilleure pratique pour des applications

réelles.

Problémes de I'approche actuelle :

Y Routes trop volumineuses et difficiles & maintenir

Y Logique métier mélangée avec la logique de routage

Y Code difficile 4 tester unitairement

Y Duplication de code entre différentes routes

Y Impossible de réutiliser la logique dans d'autres contextes

L'’Architecture RCS

Vous avez appris lapproche RCS (Router-Controller-Service) en cours (voir week 3b). Cette

architecture sépare les responsabilités en 3 couches :

| |
| ROUTER | — Définit les routes et les méthodes HTTP
| (routes/) | - Gére les paramétres de requéte (req, res)
| |
|
| ¥ |
| CONTROLLER | — Valide les données d'entrée
| (controllers/) | — Appelle les services appropriés
| | - Formate les réponses HTTP
| |
|
\
SERVICE — Contient la logique métier

[]

| (services/) | — Interagit avec la base de données
| | - Réutilisable et testable

| |

Exercice Bonus : Refactorisation en Architecture RCS

Objectif : Refactorisez votre code pour suivre l'architecture RCS.

Etape 1: Créer la structure de dossiers

mkdir controllers services

touch controllers/authController.js
touch controllers/userController.js
touch services/authService.]s

touch services/userService.js

Etape 2 : Exemple de refactorisation - Route Register

Avant (tout dans la route) :

// routes/authRoutes.]s

router.post ('/register', async (req, res) => {
const { email, password, nom, prenom } = req.body;
if (!'email || !password) {

return res.status (400).json({ error: 'Email et mot de passe requi

const client = await pool.connect () ;
try |
await client.query ('BEGIN');
const checkUser = await client.query(
'"SELECT id FROM utilisateurs WHERE email = $1°',
[email]
) ;
// ... 50 lignes de logique métier
} catch (error) {

//

1)

Apreés (Architecture RCS) :

// routes/authRoutes.]s

const authController = require('../controllers/authController');

router.post ('/register', authController.register);
router.post ('/login', authController.login);
router.post ('/logout', requireAuth, authController.logout);

router.get ('/profile', requireAuth, authController.getProfile);

// controllers/authController.js

const authService = require('../services/authService');
exports.register = async (req, res) => {
try |
const { email, password, nom, prenom } = reqg.body;

// Validation

if (!'email || !password) {

return res.status (400) .7json ({

error: 'Email et mot de passe requis'

1)

// Appel au service

const user = await authService.registerUser ({
email,
password,
nom,

prenom

res.status (201) .json ({
message: 'Utilisateur créé avec succes',
user

1)

} catch (error) {
if (error.code === 'EMAIL EXISTS') {

return res.status (409).json({ error: error.message });

}

console.error ('Erreur création utilisateur:', error);
res.status (500) .json({ error: 'Erreur serveur' });
}
s
exports.login = async (req, res) => {
try {
const { email, password } = reqg.body;
if (!'email || !password) {

return res.status (400) .json ({

error: 'Email et mot de passe requis'
}) g
const result = await authService.login(email, password);
res.json (result);
} catch (error) {

if (error.code === 'INVALID CREDENTIALS') ({

return res.status(401).Json({ error: error.message });

}
if (error.code === "'ACCOUNT INACTIVE') ({

return res.status (403).json({ error: error.message });
}
console.error ('Erreur login:', error);

res.status (500) .json({ error: 'Erreur serveur' });

// services/authService.js
const pool = require('../database/db');

const bcrypt = require ('bcrypt');

const { v4: uuidv4d } = require('uuid');

exports.registerUser = async ({ email, password, nom, prenom }) => {
const client = await pool.connect();
try |

await client.query ('BEGIN');

// Vérifier si l'email existe

const checkUser = await client.query(
'"SELECT id FROM utilisateurs WHERE email = $1°',
[email]

) ;

if (checkUser.rows.length > 0) {
await client.query ('ROLLBACK') ;
const error = new Error ('Email déja utilisé');
error.code = 'EMAIL EXISTS';

throw error;

// Hasher le mot de passe

const passwordHash = await bcrypt.hash (password, 10);

// Insérer 1l'utilisateur

const result = await client.query (
"INSERT INTO utilisateurs (email, password hash, nom, prenom)
VALUES ($S1, $2, $3, $4)
RETURNING id, email, nom, prenom, date creation’,

[email, passwordHash, nom, prenom]

const newUser = result.rows[0];

// Assigner le rdle "user"

await client.query(
"INSERT INTO utilisateur roles (utilisateur id, role id)
SELECT $1, id FROM roles WHERE nom = 'user'",
[newUser.id]

) ;

await client.query ('COMMIT') ;

return newUser;

} catch (error) {
await client.query ('ROLLBACK') ;
throw error;

} finally {

client.release () ;

i

exports.login = async (email, password) => {
const client = await pool.connect () ;
try {

await client.query ('BEGIN') ;

// Récupérer 1l'utilisateur

const userResult = await client.query (
"SELECT id, email, password hash, nom, prenom, actif
FROM utilisateurs WHERE email = $1°,
[email]

) ;

if (userResult.rows.length === 0) {
await logFailedLogin(client, email, null, 'Email inexistant')

await client.query ('COMMIT') ;
const error = new Error ('Email ou mot de passe incorrect');

error.code = 'INVALID CREDENTIALS';

throw error;

const user = userResult.rows[0];

// Vérifier si actif
if ('user.actif) {
await logFailedLogin(client, email, user.id, 'Compte désactix

await client.query ('COMMIT') ;

const error = new Error ('Compte désactivé');
error.code = 'ACCOUNT INACTIVE';

throw error;

// Vérifier le mot de passe

const passwordMatch = await bcrypt.compare (password, user.passwor

if (!passwordMatch) {
await logFailedLogin(client, email, user.id, 'Mot de passe ir

await client.query ('COMMIT') ;

const error = new Error ('Email ou mot de passe incorrect');
error.code = 'INVALID CREDENTIALS';

throw error;

// Générer token
const token = uuidvid () ;
const expiresAt = new Date();

expiresAt.setHours (expiresAt.getHours () + 24);

// Créer session

await client.query(
"INSERT INTO sessions (utilisateur id, token, date expiratior
VALUES ($1, $2, $3)°,
[user.id, token, expiresAt]

) ;

// Logger succés
await client.query(
"INSERT INTO logs_ connexion
(utilisateur id, email tentative, succes, message)
VALUES ($1, $2, true, 'Connexion réussie') ’,
[user.id, email]

) ;

await client.query ('COMMIT') ;

return {
message: 'Connexion réussie',
token,
user: {
id: user.id,
email: user.email,
nom: user.nom,
prenom: user.prenom

by

expiresAt

}s

} catch (error) {
await client.query ('ROLLBACK') ;
throw error;

} finally {

client.release();
};

// Fonction helper privée
async function logFailedLogin(client, email, userId, message)
await client.query(
"INSERT INTO logs connexion
(utilisateur id, email tentative, succes, message)
VALUES ($1, $2, false, $3)°,

[userId, email, message]

Avantages de I'Architecture RCS

Séparation des responsabilités : Chaque couche a un réle clair

Testabilité : Les services peuvent étre testés indépendamment
Réutilisabilité : Lalogique métier peut étre utilisée ailleurs (CLI, workers, etc.)
Maintenabilité : Code plus lisible et organisé

Evolutivité : Facile d'ajouter de nouvelles fonctionnalités

Gestion d'erreurs : Erreurs personnalisées avec codes d'erreur

Votre Mission

Refactorisez tout votre code pour suivre l'architecture RCS :

1. authService.js: registerUser (), login() , logout () , getUserProfile () ,
getUserLogs ()
2. userService.js: getAllUsers () , getUserById () , updateUser (), deleteUser () ,

getUserPermissions ()

3. authController.js : Tous les contréleurs d'authentification

4. userController.js : Tous les contréleurs de gestion utilisateurs
Critéeres de validation :

o [74 Aucune logique métier dans les routes
 [74 Les contréleurs ne font que valider et appeler les services

"4 Tous les appels a la base de données sont dans les services

{74 Gestion d'erreurs avec codes d'erreur personnalisés
{74 Code réutilisable et testable

Bon courage!

