Codelab: Création d'une Application de
Prise de Notes en Lighe de Commande
avec Node.js, Yargs et Chalk

loseph Azar

Introduction

Dans ce codelab, vous allez créer une application de ligne de commande pour gérer des
notes en utilisant Node.js. L'application permettra aux utilisateurs d'ajouter, de supprimer,
de lister et de lire des notes directement depuis le terminal. Nous utiliserons deux
bibliotheques essentielles : Yargs pour I'analyse des arguments de ligne de commande et
Chalk pour styliser la sortie du terminal. Ce projet est con¢u pour vous initier a Node.js, au
travail avec le systeme de fichiers, et a la création d'une interface en ligne de commande
simple.

Prérequis
Avant de commencer, assurez-vous que Node.js est installé sur votre systeme. Vous pouvez
vérifier l'installation en exécutant les commandes suivantes dans votre terminal :

1. 1. Vérifier I'installation de Node.js:

node -v

Cela devrait retourner la version de Node.js installée.

2. 2. Vérifier l'installation de NPM :

npm -v

Cela devrait retourner la version de NPM (Node Package Manager) installée.
3. 3. Vérifier l'installation de NVM (Optionnel mais recommandé) :

NVM (Node Version Manager) est un outil qui vous permet de gérer plusieurs versions de
Node.js sur votre systeme. Vérifiez s'il est installé en exécutant :

nvm --version

ANNN

Si ce n'est pas installé, suivez les instructions d'installation sur le site officiel.

Configuration du Projet

1. Créez un nouveau répertoire pour votre projet et accédez-y :

ASNN

mkdir notes-app
cd notes-app

ASNN

2. Initialisez un nouveau projet Node.js :

ASNN

npm init

ASNN

Il vous sera demandé de remplir certaines informations.

3. Installez les dépendances nécessaires :

ASNN

npm install chalk@4 yargs

Cela installera Chalk pour la colorisation de la sortie et Yargs pour la gestion des arguments
en ligne de commande. Vous devriez voir ces bibliotheques sous 1'objet dependencies dans
package.json

Explication du Module notes.js

Dans cette section, nous allons créer un module appelé “notes.js* (touch notes.js) qui
contiendra toutes les fonctions nécessaires pour gérer les notes. Nous utiliserons le module
fs® (systéme de fichiers) de Node.js pour lire et écrire des fichiers, et “chalk’ pour styliser les
messages dans le terminal.

4. 1.Importation des modules nécessaires :

ASNN

const fs = require('fs');
const chalk = require('chalk’);

ASNN

Nous importons ici les modules *fs” et “chalk’. Le module *fs’ nous permet de manipuler le
systeme de fichiers, tandis que “chalk’ est utilisé pour styliser les messages dans le terminal.

Fonction addNote

La fonction "addNote" permet d'ajouter une nouvelle note. Elle vérifie d'abord si une note
avec le méme titre existe déja. Si ce n'est pas le cas, elle ajoute la nouvelle note et la
sauvegarde dans un fichier JSON.

const addNote = (title, body) => {
const notes = loadNotes()
const duplicateNote =
if (!) {
. ({

1)

saveNotes()

console. (chalk. . ('New note added!'))
} else {

console. (chalk. . ('Note title taken!'))

}

La fonction "addNote" utilise "loadNotes™ pour charger les notes existantes, puis ‘saveNotes’
pour les sauvegarder apres avoir ajouté une nouvelle note.

Fonction removeNote

La fonction ‘removeNote’ permet de supprimer une note existante par son titre. Elle
compare la longueur de la liste avant et apres la suppression pour déterminer si la note a été
trouvée et supprimée.

const removeNote = (title) => {
const notes = loadNotes()
const notesToKeep = notes.filter((note) => note.title !== title)

if (notes.length > notesToKeep.length) {

console. log(chalk.green. inverse('Note removed!'))
saveNotes(notesToKeep)

} else {
console. log(chalk.red.inverse('No note found!'))

}

Fonctions loadNotes, readNote, listNotes, et saveNotes

const saveNotes = (notes) => {
const dataJSON = JSON.stringify(notes)

fs.writeFileSync('notes.json', datalSON)

Objectif : La fonction saveNotes est responsable de sauvegarder un tableau de notes dans
un fichier JSON (notes.json).

Etapes :

e Conversion en JSON : Le tableau de notes est d'abord converti en une chaine JSON
avec JSON.stringify(notes).

e FEcriture dans le fichier : Ensuite, cette chaine JSON est écrite dans le fichier
notes.json en utilisant fs.writeFileSync. Cette méthode est synchrone et garantit que
les données sont correctement écrites avant que le programme ne continue.

const loadNotes = () => {
try {
const dataBuffer = fs. ('notes.json')
const datalSON = . ()
return JSON. (

} catch (e) {
return []

¥

Objectif: La fonction loadNotes est utilisée pour charger les notes a partir du fichier
notes.json.

Etapes :

e Lecture du fichier : La fonction essaie de lire le fichier notes.json en utilisant
fs.readFileSync, qui renvoie un buffer (ensemble de données brut).

e Conversion en chalne de caracteéres : Ce buffer est ensuite converti en une chaine de
caractéres avec toString().

e Parsing du JSON : La chalne JSON est convertie en un objet JavaScript avec
JSON.parse et est renvoyée par la fonction.

e Gestion des erreurs : Si une erreur survient (par exemple, si le fichier n'existe pas),
la fonction attrape cette erreur avec catch et renvoie un tableau vide ([]), ce qui évite
que le programme ne plante.

const listNotes = () => {
try {
const dataBuffer = fs.readFileSync('notes.json');
const datalSON = dataBuffer.toString();
const notes = JSON.parse(datalSON);

console. log(chalk.inverse('Your notes'));

notes.forEach((note) => {
console.log(note.title);
s
} catch (err) {
console.log(chalk.red('Error reading notes!'));

Objectif : La fonction listNotes permet de lister toutes les notes stockées dans le fichier
notes.json.

Etapes :

e Lecture du fichier : Comme dans loadNotes, la fonction commence par lire le fichier
notes.json en utilisant fs.readFileSync et le convertit en chalne de caractéres.

e Parsing du JSON : La chalne est ensuite convertie en un tableau de notes en utilisant
JSON.parse.

e Affichage des titres : Un message "Your notes" est affiché en couleur inversée, puis
chaque titre de note est affiché grace a forEach.

e Gestion des erreurs : Si une erreur survient pendant la lecture du fichier, un message
d'erreur "Error reading notes!" est affiché en rouge.

const readNote = (title) => {
const notes = loadNotes()
const note = . ((note) =>

if () {
console. (chalk.
console. (
} else {
console. (chalk. . ('Note not found!'))

Objectif : La fonction readNote est utilisée pour lire le contenu d'une note spécifique en
fonction de son titre.

Etapes :

e Charger les notes : La fonction appelle loadNotes() pour charger toutes les notes
stockées dans le fichier notes.json.

e Trouver la note : Elle utilise la méthode find sur le tableau de notes pour rechercher
celle dont le titre correspond a celui fourni en parametre (title).

e Vérification : Si une note est trouvée (if (note)), son titre est affiché en couleur
inversée avec chalk.inverse, suivi de son contenu. Si aucune note ne correspond, un
message d'erreur "Note not found!" est affiché en rouge avec chalk.red.inverse.

Partager les fonctionnalités

Ala fin du fichier notes.js, vous trouverez une section tres importante qui ressemble a ceci :

module.exports = {
addNote: addNote,
removeNote: removeNote,

ListNotes: listNotes,
readNote: readNote

Objectif:

Cette partie du code est cruciale car elle rend les fonctions définies dans notes.js accessibles
depuis d'autres fichiers JavaScript de votre projet. En d'autres termes, elle permet a ces
fonctions d'étre "exportées” et utilisées ailleurs, par exemple dans votre fichier principal

app.js.

Comment ¢a fonctionne :

module.exports est un objet spécial en Node.js qui est utilisé pour définir ce qu'un fichier
doit exposer lorsqu'il est importé via require() dans un autre fichier.

Structure de l'objet :

Le code ci-dessus crée un objet contenant des paires clé-valeur. Chaque clé est le nom sous
lequel vous souhaitez que la fonction soit accessible dans les autres fichiers. Chaque valeur
est la référence a la fonction définie dans le fichier notes.js.

Par exemple, addNote: addNote signifie que la fonction addNote définie dans notes.js sera
exportée et pourra étre utilisée sous le méme nom (addNote) lorsqu'elle est importée dans
un autre fichier.

Utilisation dans d'autres fichiers :

Lorsque vous souhaitez utiliser ces fonctions dans un autre fichier, comme app.js, vous
utilisez la syntaxe suivante :

const notes = require(’./notes.js');

Cette ligne importe tout ce qui a été exporté via module.exports dans notes.js. Vous pouvez
ensuite accéder aux fonctions en utilisant notes.addNote, notes.removeNote, etc.

Importance :

e Modularité : Ce mécanisme permet de structurer votre code de maniére modulaire.
Chaque fichier peut se concentrer sur une partie spécifique de la logique de votre
application, ce qui améliore la maintenabilité et la réutilisabilité du code.

e Réutilisation : En exposant ces fonctions, vous pouvez les réutiliser dans plusieurs
parties de votre application sans avoir a dupliquer le code, ce qui réduit le risque
d'erreurs et facilite les mises a jour.

Le fichier principal (app.js)
Dans cette section, nous allons expliquer comment utiliser le fichier principal “app.js’ pour
intégrer nos fonctions et créer une application en ligne de commande.

Commencez par importer les modules ‘yargs™ et “chalk’, ainsi que les fonctions définies dans
‘notes.js :

const chalk = require("chalk");
const yargs = require("yargs");
const notes = require("./notes.js");

ASNN

Ensuite, vous pouvez définir des commandes en utilisant ‘yargs.command
pour créer une commande ‘add’ qui ajoute une nouvelle note :

const chalk require("chalk");
const yargs require("yargs");
const notes require('./notes.js');

console. log(process.argv};

yargs.version('1.1.0"')

yargs.command({
command: 'add',
describe: 'Add a new note',
builder: {
title: {
describe: 'Note title',
demandOption: s
type: 'string'
s
body: {
describe: 'Note body',
demandOption: s
type: 'string'

},
handler(argv) {
notes.addNote(argv.title, argv

*. Voici un exemple

yargs est une bibliotheque pour Node.js qui simplifie la gestion des arguments en ligne de
commande. La structure ci-dessus définit une commande yargs pour ajouter une nouvelle
note. Voici une explication détaillée de chaque composant :

1. command: 'add’

Définition : Ce champ spécifie le nom de la commande que I'utilisateur doit taper dans la
ligne de commande pour exécuter cette fonction. Ici, 'add’ est la commande qui déclenche
'ajout d'une nouvelle note.

Utilisation : Lorsque l'utilisateur tape node app.js add, cette commande est activée.
2. describe: 'Add a new note'

Définition : Ce champ fournit une bréve description de la commande. Cette description
apparait lorsque 'utilisateur demande de I'aide (par exemple, node app.js --help).

Utilisation : Elle aide I'utilisateur a comprendre ce que fait la commande 'add’.
3. builder: {...}

Définition : La section builder est utilisée pour définir les options que la commande accepte.
Chaque option peut avoir ses propres propriétés comme describe, demandOption, et type.

Contenu :

e title et body : Ce sont les options ou les arguments que I'utilisateur doit fournir avec
la commande add.

e describe : Décrit ce que fait chaque option. Par exemple, title représente le titre de la
note, et body représente le corps ou le contenu de la note.

e demandOption: true : Indique que cette option est obligatoire. Si l'utilisateur omet
de fournir cette option, yargs affichera une erreur.

e type: 'string' : Spécifie le type de données attendu pour cette option. Ici, les deux
options title et body doivent étre des chaines de caracteres.

4. handler(argv) { ... }

Définition : La fonction handler est le cceur de la commande. Elle définit ce qui se passe
lorsque la commande est exécutée.

Parametre argv : argv est un objet qui contient les valeurs des arguments passés dans la
ligne de commande. Par exemple, si l'utilisateur tape node app.js add --title="Titre"
--body="Contenu", alors argv.title sera "Titre" et argv.body sera "Contenu".

Utilisation : Dans cet exemple, handler appelle la fonction addNote de notes.js en passant les
arguments title et body fournis par I'utilisateur.

4. yargs.parse();

Ala fin du fichier app.js, pour que toutes les configurations prennent effet, vous devez
ajouter yargs.parse().

yargs.parse () ;

A FAIRE : De la méme maniere, vous pouvez créer des commandes pour ‘remove’, list’, et
‘read’.

Exécution de I'application

Une fois toutes les commandes définies, vous pouvez exécuter I'application en ligne de
commande. Voici comment utiliser les commandes :

ASNN

node app.js add --title="test1" --body="Ceci est une note de test."
node app.js list

node app.js read --title="test1"
node app.js remove --title="test1"

ANNN

Cela vous permettra d'ajouter, de lister, de supprimer et de lire des notes directement depuis
le terminal.

(base) josephazar@losephs—MacBook-Pro-2 fundamentals % node app.js add —-title="test1" ——-body="Ceci est une note de test."

[

1

(base) josephazar@losephs-MacBook—Pro-2 fundamentals % node app.js list

]
our notes

testl
(base) josephazar@losephs-MacBook-Pro-2 fundamentals % node app.js read —title="test1"

]

testl

Ceci est une note de test.

(base) josephazar@losephs—MacBook-Pro-2 fundamentals % node app.js remove ——title="test1"

	Codelab: Création d'une Application de Prise de Notes en Ligne de Commande avec Node.js, Yargs et Chalk
	Introduction
	Prérequis
	Configuration du Projet
	Explication du Module notes.js
	Fonction addNote
	Fonction removeNote
	Fonctions loadNotes, readNote, listNotes, et saveNotes
	
	Partager les fonctionnalités

	Le fichier principal (app.js)
	Exécution de l'application

