
Processus

Section 3

Processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 36



Processus Généralités

Sous-section 1

Généralités

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 37



Processus Généralités

Généralités

Définition
Un processus est l’image mémoire de l’exécution d’un programme ou fichier
binaire.

Programme ou fichier binaire :
objet statique ;
contenu identique dans le temps ;
les variables n’ont pas de valeur ;
les fichiers ne sont ni lus ni écrits.

Processus :
chargement en mémoire du contenu d’un fichier binaire ;
variables initialisées ;
tableaux créés par allocation mémoire ;
fichiers lus, écrits.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 38



Processus Généralités

Généralités

Définition
Un processus est l’image mémoire de l’exécution d’un programme ou fichier
binaire.

Programme ou fichier binaire :
objet statique ;
contenu identique dans le temps ;
les variables n’ont pas de valeur ;
les fichiers ne sont ni lus ni écrits.

Processus :
chargement en mémoire du contenu d’un fichier binaire ;
variables initialisées ;
tableaux créés par allocation mémoire ;
fichiers lus, écrits.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 38



Processus Généralités

Généralités

Définition
Un processus est l’image mémoire de l’exécution d’un programme ou fichier
binaire.

Programme ou fichier binaire :
objet statique ;
contenu identique dans le temps ;
les variables n’ont pas de valeur ;
les fichiers ne sont ni lus ni écrits.

Processus :
chargement en mémoire du contenu d’un fichier binaire ;
variables initialisées ;
tableaux créés par allocation mémoire ;
fichiers lus, écrits.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 38



Processus Généralités

Un processus est un objet dynamique.

Son état varie tout au long de son exécution.

Remarques
Chaque système d’exploitation met en œuvre son propre modèle de
processus.
Pour des versions différentes du même système d’exploitation, le modèle
de processus peut être différent

taille maximale de la mémoire utilisable
taille des pointeurs
taille des tableaux
propriétaire, droits
états du processus
. . .

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 39



Processus Généralités

Un processus est un objet dynamique.

Son état varie tout au long de son exécution.

Remarques
Chaque système d’exploitation met en œuvre son propre modèle de
processus.
Pour des versions différentes du même système d’exploitation, le modèle
de processus peut être différent

taille maximale de la mémoire utilisable
taille des pointeurs
taille des tableaux
propriétaire, droits
états du processus
. . .

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 39



Processus Généralités

Modèles de processus UNIX

Modèle conçu dans les années 1970

Évolution avec les différentes versions du système UNIX puis GNU/Linux
Caractéristiques :

Espace virtuel propre
Segmenté : plusieurs segments
Segments partageables
Identifiants de processus et de processus père uniques

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 40



Processus Généralités

Descripteur de processus

Descripteur du processus : ensemble des informations caractérisant un
processus

Table des descripteurs de processus : ensemble des descripteurs
Table utilisée à :

Création
Destruction
Allocation du processeur
Modification de l’état

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 41



Processus Généralités

États d’un processus

Dans tous les systèmes d’exploitation un processus peut-être dans les
trois états principaux suivants :

Actif : un processeur lui a été attribué et il exécute une partie de son code
Activable : il est prêt à être exécuté, il dispose de toutes les ressources
nécessaires hormis un processeur
En attente ou bloqué : un événement extérieur, une ressource est/sont
nécessaire(s) à son exécution

Le nombre réels d’états varie suivant les système d’exploitation

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 42



Processus Généralités

Diagramme d’états

Actif

Bloqué

Création Terminaison

Activable

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 43



Processus Généralités

Diagramme d’états

Actif

Bloqué

Création Terminaison

Activable

Activable → Actif : attribution d’un processeur

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 43



Processus Généralités

Diagramme d’états

Actif

Bloqué

Création Terminaison

Activable

Actif → Activable : perte du processeur, en temps partagé par exemple

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 43



Processus Généralités

Diagramme d’états

Actif

Bloqué

Création Terminaison

Activable

Actif → Bloqué : le processus se met ou est mis en attente d’un
événement extérieur

Fin d’une opération d’E/S, attente d’un signal, allocation de mémoire, . . .

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 43



Processus Généralités

Diagramme d’états

Actif

Bloqué

Création Terminaison

Activable

Bloqué →Activable : l’événement attendu s’est produit

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 43



Processus Généralités

Processus : création

Dans les systèmes modernes, multi-tâches, la création de processus est
dynamique

Primitive système permettant de créer un processus

À la création d’un processus le système d’exploitation doit

Créer un nouveau descripteur

Trouver les ressources nécessaires à son exécution : mémoire,
périphériques,. . ., sauf le processeur

Insérer le processus dans la liste des tâches à exécuter pour lui attribuer
un processeur

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 44



Processus Généralités

Processus : terminaison

Un processus peut se terminer
Il arrive à la fin de son code : terminaison normale
Par action du système d’exploitation : il a commis une faute

Dans tous les cas le système d’exploitation doit :
Libérer les ressources qui avait été attribuées
Détruire le descripteur du processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 45



Processus Linux

Sous-section 2

Linux

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 46



Processus Linux

Arborescence des processus

Structure arborescente des processus

Un processus est créé par le noyau lorsqu’il a terminé son initialisation

Processus 1 : init
Chaque processus possède :

Un identifiant : PID ou Processus IDentifier
Celui de son père est le PPID ou Parent PID

Un identifiant utilisateur réel : créateur du processus
Un identifiant utilisateur effectif : droits ou permissions
Des identifiants de groupe réel, effectif

En général, identifiant effectif = réel, mais c’est modifiable par utilisation
de primitives ou du mécanisme de prise d’identité
Fonctions :

getpid(2), getppid(2)
getuid(2), geteuid(2), getgid(2), getegid(2)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 47



Processus Linux

Arborescence des processus

Structure arborescente des processus

Un processus est créé par le noyau lorsqu’il a terminé son initialisation

Processus 1 : init
Chaque processus possède :

Un identifiant : PID ou Processus IDentifier
Celui de son père est le PPID ou Parent PID
Un identifiant utilisateur réel : créateur du processus
Un identifiant utilisateur effectif : droits ou permissions

Des identifiants de groupe réel, effectif

En général, identifiant effectif = réel, mais c’est modifiable par utilisation
de primitives ou du mécanisme de prise d’identité
Fonctions :

getpid(2), getppid(2)
getuid(2), geteuid(2), getgid(2), getegid(2)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 47



Processus Linux

Arborescence des processus

Structure arborescente des processus

Un processus est créé par le noyau lorsqu’il a terminé son initialisation

Processus 1 : init
Chaque processus possède :

Un identifiant : PID ou Processus IDentifier
Celui de son père est le PPID ou Parent PID
Un identifiant utilisateur réel : créateur du processus
Un identifiant utilisateur effectif : droits ou permissions
Des identifiants de groupe réel, effectif

En général, identifiant effectif = réel, mais c’est modifiable par utilisation
de primitives ou du mécanisme de prise d’identité

Fonctions :
getpid(2), getppid(2)
getuid(2), geteuid(2), getgid(2), getegid(2)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 47



Processus Linux

Arborescence des processus

Structure arborescente des processus

Un processus est créé par le noyau lorsqu’il a terminé son initialisation

Processus 1 : init
Chaque processus possède :

Un identifiant : PID ou Processus IDentifier
Celui de son père est le PPID ou Parent PID
Un identifiant utilisateur réel : créateur du processus
Un identifiant utilisateur effectif : droits ou permissions
Des identifiants de groupe réel, effectif

En général, identifiant effectif = réel, mais c’est modifiable par utilisation
de primitives ou du mécanisme de prise d’identité
Fonctions :

getpid(2), getppid(2)
getuid(2), geteuid(2), getgid(2), getegid(2)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 47



Processus Création (fork)

Sous-section 3

Création (fork)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 48



Processus Création (fork)

Création de processus : fork

La création de processus se fait par duplication d’un processus existant

Primitive :

#include <unistd.h>
pid_t fork(void);

L’exécution de cette primitive par un processus duplique le processus
appelant qui devient le processus père, le processus créé étant le
processus fils

L’ensemble des segments hormis le segment de pile sont dupliqués et un
nouveau segment de pile est créé

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 49



Processus Création (fork)

Création de processus : fork

La création de processus se fait par duplication d’un processus existant

Primitive :

#include <unistd.h>
pid_t fork(void);

L’exécution de cette primitive par un processus duplique le processus
appelant qui devient le processus père, le processus créé étant le
processus fils

L’ensemble des segments hormis le segment de pile sont dupliqués et un
nouveau segment de pile est créé

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 49



Processus Création (fork)

Création de processus : fork

La création de processus se fait par duplication d’un processus existant

Primitive :

#include <unistd.h>
pid_t fork(void);

L’exécution de cette primitive par un processus duplique le processus
appelant qui devient le processus père, le processus créé étant le
processus fils

L’ensemble des segments hormis le segment de pile sont dupliqués et un
nouveau segment de pile est créé

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 49



Processus Création (fork)

Création de processus : héritage

Le processus fils hérite de son père la majorité des caractéristiques sauf
le PID, le PPID et les signaux en attente de traitement

L’héritage comprends l’ensemble des descripteurs ouverts ce qui permet
la redirection des fichiers d’E/S standard

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 50



Processus Création (fork)

Création de processus : distinction père/fils

A l’issue du fork il existe deux processus exécutant le même code

La distinction processus père/processus fils est réalisée par la valeur
retournée par fork qui est différente selon le processus
Père :

−1 : indique que la primitive a échoué
> 0 : un processus fils a été créé et son PID est la valeur retournée

Fils : 0

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 51



Processus Création (fork)

Exemple

#include <unistd.h>
#include <stdio.h>
int main(void)
{

pid_t fils, processus, pere;
fils = fork();
switch (fils) {
case −1 : fprintf(stderr,"Pere : echec du fork\n");

break;
case 0 : // processus fils

processus = getpid(); pere = getppid();
printf("Processus fils : mon no = %d mon pere = %d\n", processus, pere);
return 0;

}
// processus pere
processus = getpid(); pere = getppid();
printf("Processus pere : mon no = %d mon pere = %d\n", processus, pere);
return 0;

}

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 52



Processus Terminaison

Sous-section 4

Terminaison

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 53



Processus Terminaison

Terminaison d’un processus

Deux cas possibles : fin anormale et fin normale

Dans les deux cas :
l’ensemble des ressources allouées au processus sont libérées ;
le descripteur du processus est mis à jour avec son code de retour ou
status ;
un signal SIGCHLD est émis vers son processus père.

Si le processus a des enfants, ceux-ci sont adoptés par le processus
init(1)
. . . ou par le processus «subreaper» le plus proche, tel que défini par l’opération

prctl(PR_SET_CHILD_SUBREAPER)

Le processus passe à l’état zombie jusqu’à l’acquisition de son code de
retour par son père

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 54



Processus Terminaison

Terminaison d’un processus

Deux cas possibles : fin anormale et fin normale
Dans les deux cas :

l’ensemble des ressources allouées au processus sont libérées ;
le descripteur du processus est mis à jour avec son code de retour ou
status ;
un signal SIGCHLD est émis vers son processus père.

Si le processus a des enfants, ceux-ci sont adoptés par le processus
init(1)
. . . ou par le processus «subreaper» le plus proche, tel que défini par l’opération

prctl(PR_SET_CHILD_SUBREAPER)

Le processus passe à l’état zombie jusqu’à l’acquisition de son code de
retour par son père

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 54



Processus Terminaison

Terminaison d’un processus

Deux cas possibles : fin anormale et fin normale
Dans les deux cas :

l’ensemble des ressources allouées au processus sont libérées ;
le descripteur du processus est mis à jour avec son code de retour ou
status ;
un signal SIGCHLD est émis vers son processus père.

Si le processus a des enfants, ceux-ci sont adoptés par le processus
init(1)
. . . ou par le processus «subreaper» le plus proche, tel que défini par l’opération

prctl(PR_SET_CHILD_SUBREAPER)

Le processus passe à l’état zombie jusqu’à l’acquisition de son code de
retour par son père

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 54



Processus Terminaison

Terminaison d’un processus

Deux cas possibles : fin anormale et fin normale
Dans les deux cas :

l’ensemble des ressources allouées au processus sont libérées ;
le descripteur du processus est mis à jour avec son code de retour ou
status ;
un signal SIGCHLD est émis vers son processus père.

Si le processus a des enfants, ceux-ci sont adoptés par le processus
init(1)
. . . ou par le processus «subreaper» le plus proche, tel que défini par l’opération

prctl(PR_SET_CHILD_SUBREAPER)

Le processus passe à l’état zombie jusqu’à l’acquisition de son code de
retour par son père

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 54



Processus Terminaison

Terminaison anormale

Lorsque le processus reçoit un signal terminant son exécution, en
particulier lorsqu’il tente d’effectuer une opération illégale :

accès mémoire à une partie de la mémoire non allouée
tentative d’écriture dans un segment en lecture seule
. . .

Le système arrête alors le processus immédiatement

Le code de retour transmis au processus père indique la nature de la
faute (numéro de signal)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 55



Processus Terminaison

Terminaison anormale

Lorsque le processus reçoit un signal terminant son exécution, en
particulier lorsqu’il tente d’effectuer une opération illégale :

accès mémoire à une partie de la mémoire non allouée
tentative d’écriture dans un segment en lecture seule
. . .

Le système arrête alors le processus immédiatement

Le code de retour transmis au processus père indique la nature de la
faute (numéro de signal)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 55



Processus Terminaison

Terminaison anormale

Lorsque le processus reçoit un signal terminant son exécution, en
particulier lorsqu’il tente d’effectuer une opération illégale :

accès mémoire à une partie de la mémoire non allouée
tentative d’écriture dans un segment en lecture seule
. . .

Le système arrête alors le processus immédiatement

Le code de retour transmis au processus père indique la nature de la
faute (numéro de signal)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 55



Processus Terminaison

Terminaison normale

Durant son exécution le processus effectue un appel direct ou indirect à la
primitive _exit(2)

#include <unistd.h>
void _exit(int status);

où status est le code de retour du processus

La fonction de bibliothèque exit(3) permet d’exécuter une partie de code
associée au processus par la fonction atexit(3)

#include <stdlib.h>
void exit(int status);
int atexit(void (*function)(void));

Dans un programme C, terminer la fonction main() avec l’instruction
return expression; est équivalent à appeler exit() avec la valeur de
l’expression en argument.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 56



Processus Terminaison

Terminaison normale

Durant son exécution le processus effectue un appel direct ou indirect à la
primitive _exit(2)

#include <unistd.h>
void _exit(int status);

où status est le code de retour du processus

La fonction de bibliothèque exit(3) permet d’exécuter une partie de code
associée au processus par la fonction atexit(3)

#include <stdlib.h>
void exit(int status);
int atexit(void (*function)(void));

Dans un programme C, terminer la fonction main() avec l’instruction
return expression; est équivalent à appeler exit() avec la valeur de
l’expression en argument.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 56



Processus Terminaison

Terminaison normale

Durant son exécution le processus effectue un appel direct ou indirect à la
primitive _exit(2)

#include <unistd.h>
void _exit(int status);

où status est le code de retour du processus

La fonction de bibliothèque exit(3) permet d’exécuter une partie de code
associée au processus par la fonction atexit(3)

#include <stdlib.h>
void exit(int status);
int atexit(void (*function)(void));

Dans un programme C, terminer la fonction main() avec l’instruction
return expression; est équivalent à appeler exit() avec la valeur de
l’expression en argument.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 56



Processus Attente de la fin d’un processus fils

Sous-section 5

Attente de la fin d’un processus fils

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 57



Processus Attente de la fin d’un processus fils

Attente de la fin d’un processus fils

Il est souvent utile qu’un processus père ne reprenne son exécution
qu’après la fin du processus fils

Fonctionnement classique du shell lorsqu’une commande est exécutée en
avant plan

Le primitive wait() permet de mettre en attente un processus jusqu’à la fin
d’un de ses processus fils

Si un processus fils s’est terminé avant l’appel de wait() le père n’est pas
mis en attente

Synchronisation du père par la fin du fils

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 58



Processus Attente de la fin d’un processus fils

Attente de la fin d’un processus fils

Lorsqu’un processus se termine, toutes ses ressources sont libérées ;
seul son descripteur est conservé car il contient son code de retour

Le processus est dans l’état zombie jusqu’à ce que son père exécute
wait() pour obtenir son code de retour

Code de retour :

fin normale valeur retournée par la fonction main() ou passée en
paramètre à la primitive exit()

fin anormale numéro du signal ayant provoqué la fin du processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 59



Processus Attente de la fin d’un processus fils

Primitive wait()

#include <sys/wait.h>
pid_t wait(int *status);

Résultat retourné :

-1 en cas d’erreur, ou si le processus n’a pas de fils

le PID d’un processus fils qui s’est terminé

si status n’est pas NULL, alors *status contiendra le code de retour du
processus

Autres primitives

pid_t waitpid(pid_t pid, int *status, int options);
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Voir les pages du manuel en ligne : man 2 wait

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 60



Processus Attente de la fin d’un processus fils

Primitive wait()

#include <sys/wait.h>
pid_t wait(int *status);

Résultat retourné :

-1 en cas d’erreur, ou si le processus n’a pas de fils

le PID d’un processus fils qui s’est terminé

si status n’est pas NULL, alors *status contiendra le code de retour du
processus

Autres primitives

pid_t waitpid(pid_t pid, int *status, int options);
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Voir les pages du manuel en ligne : man 2 wait

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 60



Processus Attente de la fin d’un processus fils

Code de retour

Les macros suivantes permettent d’examiner la valeur du code de retour :

WIFEXITED(status) vrai si le processus s’est terminé normalement

WEXITSTATUS(status) code de retour du processus (8 bits de poids faible de
status)

WIFSIGNALED(status) vrai si le processus a été terminé par un signal

WTERMSIG(status) numéro du signal ayant terminé le processus

WCOREDUMP(status) vrai si une image mémoire du processus a été créée
(fichier core)

WIFSTOPPED(status) vrai si le processus a été arrêté par un signal

WSTOPSIG(status) numéro du signal ayant causé l’arrêt

WIFCONTINUED(status) vrai si le processus a été relancé par SIGCONT

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 61



Processus Attente de la fin d’un processus fils

Code de retour

Les macros suivantes permettent d’examiner la valeur du code de retour :

WIFEXITED(status) vrai si le processus s’est terminé normalement

WEXITSTATUS(status) code de retour du processus (8 bits de poids faible de
status)

WIFSIGNALED(status) vrai si le processus a été terminé par un signal

WTERMSIG(status) numéro du signal ayant terminé le processus

WCOREDUMP(status) vrai si une image mémoire du processus a été créée
(fichier core)

WIFSTOPPED(status) vrai si le processus a été arrêté par un signal

WSTOPSIG(status) numéro du signal ayant causé l’arrêt

WIFCONTINUED(status) vrai si le processus a été relancé par SIGCONT

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 61



Processus Attente de la fin d’un processus fils

Code de retour

Les macros suivantes permettent d’examiner la valeur du code de retour :

WIFEXITED(status) vrai si le processus s’est terminé normalement

WEXITSTATUS(status) code de retour du processus (8 bits de poids faible de
status)

WIFSIGNALED(status) vrai si le processus a été terminé par un signal

WTERMSIG(status) numéro du signal ayant terminé le processus

WCOREDUMP(status) vrai si une image mémoire du processus a été créée
(fichier core)

WIFSTOPPED(status) vrai si le processus a été arrêté par un signal

WSTOPSIG(status) numéro du signal ayant causé l’arrêt

WIFCONTINUED(status) vrai si le processus a été relancé par SIGCONT

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 61



Processus Attente de la fin d’un processus fils

Exemple wait() (1/3)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(void)
{

pid_t fils, processus, pere;
int i, status;
i = 1;
fils = fork();
switch (fils) {
case −1:

fprintf(stderr,"Pere : echec du fork\n");
return EXIT_FAILURE;
break;
/*... */

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 62



Processus Attente de la fin d’un processus fils

Exemple wait() (2/3)

/*... */
case 0 : //processus fils

processus = getpid();
pere = getppid();
printf("Processus fils : mon no = %d mon pere = %d\n", processus, pere);
printf("Processus fils : i = %d\n", i);
i = 10;
printf("Processus fils : i = %d\n", i);
return 0;

} // switch

/* ... */

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 63



Processus Attente de la fin d’un processus fils

Exemple wait() (3/3)

/* ... */
// Processus pere
processus = getpid();
pere = getppid();
// Attente du fils
fils = wait (&status);
printf("Processus pere : mon no = %d mon pere = %d\n", processus, pere);
printf("Processus pere : i = %d\n", i);
printf("Processus pere : mon fils %d s’est terminé \n", fils);
if (WIFEXITED(status))

printf("Processus pere : mon fils s’est terminé normalement" \
" avec le code %d\n", WEXITSTATUS(status));

if (WIFSIGNALED(status))
printf("Processus pere : mon fils s’est terminé anormalement" \

" avec le signal %d\n", WTERMSIG(status));
return EXIT_SUCCESS;

}

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 64



Processus Attente de la fin d’un processus fils

Exemple wait() : exécution

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 65



Processus Recouvrement (exec)

Sous-section 6

Recouvrement (exec)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 66



Processus Recouvrement (exec)

Recouvrement de processus par le chargement d’un fichier
exécutable

fork : duplique un processus existant mais ne permet pas de créer un
nouveau processus exécutant un nouveau segment de code

Les primitives de la famille exec permettent de remplacer les segments de
code, données et pile par le chargement en mémoire d’un fichier binaire

Le segment système n’est pas modifié, l’héritage du fork est donc
préservé

Les descripteurs de fichiers, sauf ceux ouverts avec O_CLOEXEC, sont
toujours valides ce qui permet les redirections

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 67



Processus Recouvrement (exec)

La primitive de recouvrement : execve()

C’est la seule primitive (fonction exécutée par le système d’exploitation)
permettant de charger en mémoire un fichier binaire

Prototype :

#include <unistd.h>
int execve(const char *pathname, char *const argv[], char *const envp[]);

Cette primitive, lorsqu’elle est exécutée par un processus, provoque la
modification des segments de code, données, pile par le contenu d’un
fichier binaire

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 68



Processus Recouvrement (exec)

execve()

Paramètres

pathname chemin d’accès du fichier binaire
argv tableau de chaînes de caractères qui seront transmises

comme argument (le tableau doit être terminé par un
pointeur NULL)

envp tableau de chaînes de caractères de la forme "NOM=valeur",
constituant l’environnement du processus (le tableau doit
être terminé par un pointeur NULL)

Résultat retourné
En cas de succès cette primitive ne revient pas car le segment de code
initial est détruit
En cas d’échec execve retourne -1 et errno contient un code d’erreur
indiquant les raisons

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 69



Processus Recouvrement (exec)

execve()

Paramètres

pathname chemin d’accès du fichier binaire
argv tableau de chaînes de caractères qui seront transmises

comme argument (le tableau doit être terminé par un
pointeur NULL)

envp tableau de chaînes de caractères de la forme "NOM=valeur",
constituant l’environnement du processus (le tableau doit
être terminé par un pointeur NULL)

Résultat retourné
En cas de succès cette primitive ne revient pas car le segment de code
initial est détruit
En cas d’échec execve retourne -1 et errno contient un code d’erreur
indiquant les raisons

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 69



Processus Recouvrement (exec)

execve(), remarques

La variable PATH est une variable du SHELL, elle n’est pas utilisée pour
trouver le fichier binaire dans l’arborescence il est donc obligatoire
d’utiliser un chemin d’accès pour le fichier

Ce fichier doit être exécutable pour le propriétaire effectif du processus
(droit x)

Si ce fichier binaire possède un des bits de prise d’identité du propriétaire
(setuid) ou du groupe (setgid) positionné les identificateurs de propriétaire
ou de groupe effectifs deviennent le propriétaire ou le groupe du fichier

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 70



Processus Recouvrement (exec)

Caractéristiques du processus résultant

Tous les attributs du processus initial sont réservés, sauf :

Les signaux pour lesquels le processus avait placé un gestionnaire sont
réinitialisés à leur valeur par défaut (consultez signal(7))

L’éventuelle pile spécifique pour les gestionnaires de signaux n’est pas
conservée (sigaltstack(2))

Les projections en mémoire ne sont pas conservées (mmap(2))

Les segments de mémoire partagée System V sont détachés (shmat(2))

Les objets de mémoire partagée POSIX sont supprimés (shm_open(3))

Les descripteurs de files de messages POSIX ouverts sont fermés
(mq_overview(7))

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 71



Processus Recouvrement (exec)

Caractéristiques du processus résultant

Les sémaphores nommés POSIX ouverts sont fermés (sem_overview(7))

Les temporisations POSIX ne sont pas conservées (timer_create(2))

Les flux de répertoires ouverts sont fermés (opendir(3))

Les verrouillages de mémoire ne sont pas préservés (mlock(2),
mlockall(2))

Les gestionnaires de terminaison ne sont pas préservés (atexit(3),
on_exit(3))

L’environnement de travail en virgule flottante est remis à zéro (consultez
fenv(3))

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 72



Processus Recouvrement (exec)

Exemple : exécution de ls

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char *argv[])
{

char *arg[4];
char *env[] = {NULL};
if (argc != 2) {

fprintf(stderr, "Usage: %s répertoire\n", argv[0]);
return EXIT_FAILURE;

}
arg[0] = "ls"; /* création du tableau d’arguments */
arg[1] = "-l";
arg[2] = argv[1];
arg[3] = NULL;
execve("/bin/ls", arg, env); /* exécution de /bin/ls */
perror("execve"); /* execve() ne retourne qu’en cas d’erreur */
return EXIT_FAILURE;

}

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 73



Processus Recouvrement (exec)

Les fonctions de bibliothèque de recouvrement

Elles sont au nombre de 6 que l’on peut séparer en deux groupes
Les fonctions execl... admettant en paramètres une liste de paramètres
de type char* terminées par NULL
Les fonctions execv... admettant en paramètres un tableau de pointeur
sur des caractères

Lorsqu’elles se terminent par p, la variable PATH de l’environnement est
utilisée pour trouver le fichier exécutable

Lorsqu’elles se terminent par e, un environnement est transmis

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 74



Processus Recouvrement (exec)

Les fonctions de bibliothèque de recouvrement

#include <unistd.h>

int execl(const char *pathname, const char *arg, ...
/*, (char *) NULL */);

int execlp(const char *file, const char *arg, ...
/*, (char *) NULL */);

int execle(const char *pathname, const char *arg, ...
/*, (char *) NULL, char *const envp[] */);

int execv(const char *pathname, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 75



Processus Recouvrement (exec)

Les fonctions de bibliothèque de recouvrement

Comme execve toutes ces fonctions ne retournent pas en cas de succès
puisque le segment de code original est remplacé par le segment de code
issu du chargement du fichier binaire

Elles retournent -1 en cas d’erreur

errno contient le code d’erreur

perror() peut donc être appelé pour afficher le message d’erreur système

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 76



Processus Recouvrement (exec)

Exemple : execlp()

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{

if (argc != 2) {
fprintf(stderr, "Il manque le nom du fichier\n");
return EXIT_FAILURE;

}
else {

execlp("wc", "wc", "-c", "-m", "-l", "-w", argv[1], (char*)NULL);
fprintf(stderr, "Echec de la primitive execlp\n");
return EXIT_SUCCESS ;

}
}

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 77



Processus Recouvrement (exec)

Exemple : execv()

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char *argv[])
{

char *arg[4];
if (argc != 2) {

fprintf(stderr, "Usage: %s répertoire\n", argv[0]);
return EXIT_FAILURE;

}
arg[0] = "ls"; /* création du tableau d’arguments */
arg[1] = "-l";
arg[2] = argv[1];
arg[3] = NULL;
execv("/bin/ls", arg); /* exécution de /bin/ls */
perror("execv"); /* execv() ne retourne qu’en cas d’erreur */
return EXIT_FAILURE;

}

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Système 2025–2026 p. 78


