Processus

Processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Généralités

Arnaud GIERSCH (IUT-NF Programmation Syst

Processus Généralités

Généralités

Définition

Un processus est 'image mémoire de I'exécution d’'un programme ou fichier
binaire.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 38

Processus Généralités

Généralités

Définition

Un processus est I'image mémoire de I'exécution d’'un programme ou fichier
binaire.

@ Programme ou fichier binaire :
@ objet statique;
e contenu identique dans le temps;
@ les variables n'ont pas de valeur;
@ les fichiers ne sont ni lus ni écrits.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 38

Processus Généralités

Généralités

Définition
Un processus est 'image mémoire de I'exécution d’'un programme ou fichier
binaire.

@ Programme ou fichier binaire :
@ objet statique;
e contenu identique dans le temps;
@ les variables n'ont pas de valeur;
@ les fichiers ne sont ni lus ni écrits.

@ Processus :

o chargement en mémoire du contenu d’un fichier binaire ;
@ variables initialisées ;

o tableaux créés par allocation mémoire ;

o fichiers lus, écrits.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 38

Processus Généralités

@ Un processus est un objet dynamique.
@ Son état varie tout au long de son exécution.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

@ Un processus est un objet dynamique.
@ Son état varie tout au long de son exécution.

Remarques

@ Chaque systeme d’exploitation met en ceuvre son propre modéle de
processus.

@ Pour des versions différentes du méme systéeme d’exploitation, le modele
de processus peut étre différent
o taille maximale de la mémoire utilisable
taille des pointeurs
taille des tableaux
propriétaire, droits
états du processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Modeles de processus UNIX

@ Modéle congu dans les années 1970
@ Evolution avec les différentes versions du systéme UNIX puis GNU/Linux

@ Caractéristiques :

Espace virtuel propre

o Segmenté : plusieurs segments

o Segments partageables

o Identifiants de processus et de processus pére uniques

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Descripteur de processus

@ Descripteur du processus : ensemble des informations caractérisant un
processus

@ Table des descripteurs de processus : ensemble des descripteurs

@ Table utilisée a :

o Création

Destruction

Allocation du processeur
Modification de I'état

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 41

Processus Généralités

Etats d’un processus

@ Dans tous les systémes d’exploitation un processus peut-étre dans les
trois états principaux suivants :
o Actif : un processeur lui a été attribué et il exécute une partie de son code
o Activable : il est prét a étre exécuté, il dispose de toutes les ressources
nécessaires hormis un processeur
o En attente ou bloqué : un événement extérieur, une ressource est/sont
nécessaire(s) a son exécution

@ Le nombre réels d’'états varie suivant les systeme d’exploitation

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 42

Processus Généralités

Diagramme d’états

Terminaison
Bloqué

Activable

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Diagramme d’états

Terminaison
Bloqué

Activable

@ Activable — Actif : attribution d’un processeur)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Diagramme d’états

Terminaison

@ Actif — Activable : perte du processeur, en temps partagé par exemple J

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Diagramme d’états

@
Activable

@ Actif — Bloqué : le processus se met ou est mis en attente d’un
événement extérieur

@ Fin d’'une opération d’E/S, attente d’un signal, allocation de mémoire, ...

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026

Processus Généralités

Diagramme d’états

Terminaison
Bloqué

Activable

@ Bloqué —Activable : 'événement attendu s’est produit)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Généralités

Processus : création

@ Dans les systémes modernes, multi-taches, la création de processus est
dynamique

Primitive systéme permettant de créer un processus

A la création d’un processus le systéme d’exploitation doit

Créer un nouveau descripteur

Trouver les ressources nécessaires a son exécution : mémoire,
périphériques,. . ., sauf le processeur

@ Insérer le processus dans la liste des taches a exécuter pour lui attribuer
un processeur

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 44

Processus Généralités

Processus : terminaison

@ Un processus peut se terminer

o Il arrive a la fin de son code : terminaison normale
e Par action du systeme d’exploitation : il a commis une faute

@ Dans tous les cas le systéeme d’exploitation doit :

o Libérer les ressources qui avait été attribuées
o Détruire le descripteur du processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 45

Processus Linux

Linux

Arnaud GIERSCH (IUT-NF

Programmation Syst:

Processus Linux

Arborescence des processus

@ Structure arborescente des processus
@ Un processus est créé par le noyau lorsqu’il a terminé son initialisation
@ Processus 1 : init

@ Chaque processus possede :

e Un identifiant : PID ou Processus IDentifier
@ Celui de son pére est le PPID ou Parent PID

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 47

Processus Linux

Arborescence des processus

@ Structure arborescente des processus
@ Un processus est créé par le noyau lorsqu’il a terminé son initialisation
@ Processus 1 : init

@ Chaque processus possede :

Un identifiant : PID ou Processus IDentifier

@ Celui de son pére est le PPID ou Parent PID

o Un identifiant utilisateur réel : créateur du processus
o Un identifiant utilisateur effectif : droits ou permissions

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 47

Processus Linux

Arborescence des processus

Structure arborescente des processus
Un processus est créé par le noyau lorsqu’il a terminé son initialisation
Processus 1 : init

Chaque processus posséde :

Un identifiant : PID ou Processus IDentifier

@ Celui de son pére est le PPID ou Parent PID

o Un identifiant utilisateur réel : créateur du processus
)

)

Un identifiant utilisateur effectif : droits ou permissions
Des identifiants de groupe réel, effectif

En général, identifiant effectif = réel, mais c’est modifiable par utilisation
de primitives ou du mécanisme de prise d’identité

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 47

Processus Linux

Arborescence des processus

@ Structure arborescente des processus
@ Un processus est créé par le noyau lorsqu’il a terminé son initialisation
@ Processus 1 : init
@ Chaque processus possede :
o Un identifiant : PID ou Processus IDentifier
@ Celui de son pére est le PPID ou Parent PID
o Un identifiant utilisateur réel : créateur du processus
o Un identifiant utilisateur effectif : droits ou permissions
o Des identifiants de groupe réel, effectif
@ En général, identifiant effectif = réel, mais c’est modifiable par utilisation
de primitives ou du mécanisme de prise d’identité
@ Fonctions :

@ getpid(2), getppid(2)
@ getuid(2), geteuid(2), getgid(2), getegid(2)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 47

Processus Création (fork)

Création (fork)

Arnaud GIERSCH (IUT-NFC.

Programmation Systé

Processus Création (fork)

Création de processus : fork

@ La création de processus se fait par duplication d’un processus existant
@ Primitive :

#include <unistd.h>
pid_t fork(void);

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 49

Processus Création (fork)

Création de processus : fork

@ La création de processus se fait par duplication d’un processus existant

@ Primitive :

#include <unistd.h>
pid_t fork(void);

@ Lexécution de cette primitive par un processus duplique le processus
appelant qui devient le processus pére, le processus créé étant le
processus fils

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 49

Processus Création (fork)

Création de processus : fork

@ La création de processus se fait par duplication d’un processus existant
@ Primitive :

#include <unistd.h>
pid_t fork(void);

@ Lexécution de cette primitive par un processus duplique le processus
appelant qui devient le processus pére, le processus créé étant le
processus fils

@ Lensemble des segments hormis le segment de pile sont dupliqués et un
nouveau segment de pile est créé

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 49

Processus Création (fork)

Création de processus : héritage

@ Le processus fils hérite de son pére la majorité des caractéristiques sauf
le PID, le PPID et les signaux en attente de traitement

@ Lhéritage comprends I'ensemble des descripteurs ouverts ce qui permet
la redirection des fichiers d’E/S standard

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Création (fork)

Creéation de processus : distinction pere/fils

@ Alissue du fork il existe deux processus exécutant le méme code
@ La distinction processus pére/processus fils est réalisée par la valeur
retournée par fork qui est différente selon le processus
@ Pere:
o —1 :indique que la primitive a échoué
@ > 0:un processus fils a été créé et son PID est la valeur retournée
@ Fils:0

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus

Création (fork)

#include <unistd.h>
#include <stdio.h>
int main(void)
{
pid_t fils, processus, pere;
fils = fork();
switch (fils) {
case —1 : fprintf(stderr,"Pere :
break;
case 0 : // processus fils
processus = getpid(); pere = getppid();
printf("Processus fils
return 0;
1
// processus pere
processus = getpid(); pere = getppid();
printf("Processus pere
return 0;

echec du fork\n");

: mon no = %d mon pere =

}

$d\n", processus, pere);

: mon no = %d mon pere = %d\n", processus, pere);

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme

2025-2026

Processus Terminaison

Terminaison

Arnaud GIERSCH (IUT-NF Programmation Syst

Processus Terminaison

Terminaison d’'un processus

@ Deux cas possibles : fin anormale et fin normale

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 54

Processus Terminaison

Terminaison d’'un processus

@ Deux cas possibles : fin anormale et fin normale
@ Dans les deux cas :

e I'ensemble des ressources allouées au processus sont libérées;

@ le descripteur du processus est mis a jour avec son code de retour ou
status;

@ un signal SIGCHLD est émis vers son processus pere.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 54

Processus Terminaison

Terminaison d’'un processus

@ Deux cas possibles : fin anormale et fin normale

@ Dans les deux cas :
e I'ensemble des ressources allouées au processus sont libérées;
@ le descripteur du processus est mis a jour avec son code de retour ou
status;
@ un signal SIGCHLD est émis vers son processus pere.
@ Sile processus a des enfants, ceux-ci sont adoptés par le processus
init(1)
... ou par le processus «subreaper» le plus proche, tel que défini par I'opération
prctl(PR_SET_CHILD SUBREAPER)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 54

Processus Terminaison

Terminaison d’'un processus

@ Deux cas possibles : fin anormale et fin normale
@ Dans les deux cas :
e I'ensemble des ressources allouées au processus sont libérées;
@ le descripteur du processus est mis a jour avec son code de retour ou
status;
@ un signal SIGCHLD est émis vers son processus pere.
@ Sile processus a des enfants, ceux-ci sont adoptés par le processus
init(1)
... ou par le processus «subreaper» le plus proche, tel que défini par I'opération
prctl(PR_SET_CHILD SUBREAPER)

@ Le processus passe a I'état zombie jusqu’a I'acquisition de son code de
retour par son pere

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 54

Processus Terminaison

Terminaison anormale

@ Lorsque le processus recgoit un signal terminant son exécution, en
particulier lorsqu’il tente d’effectuer une opération illégale :
@ acces mémoire a une partie de la mémoire non allouée
o tentative d’écriture dans un segment en lecture seule
o ...

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Terminaison

Terminaison anormale

@ Lorsque le processus recgoit un signal terminant son exécution, en
particulier lorsqu’il tente d’effectuer une opération illégale :

@ acces mémoire a une partie de la mémoire non allouée
o tentative d’écriture dans un segment en lecture seule
o ...

@ Le systeme arréte alors le processus immédiatement

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 55

Processus Terminaison

Terminaison anormale

@ Lorsque le processus recgoit un signal terminant son exécution, en
particulier lorsqu’il tente d’effectuer une opération illégale :

@ acces mémoire a une partie de la mémoire non allouée
o tentative d’écriture dans un segment en lecture seule
o ...

@ Le systeme arréte alors le processus immédiatement

@ Le code de retour transmis au processus pére indique la nature de la
faute (numéro de signal)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 55

Processus Terminaison

Terminaison normale

@ Durant son exécution le processus effectue un appel direct ou indirect a la
primitive _exit(2)

#include <unistd.h>
void _exit(int status);

ou status est le code de retour du processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 56

Processus Terminaison

Terminaison normale

@ Durant son exécution le processus effectue un appel direct ou indirect a la
primitive _exit(2)

#include <unistd.h>
void _exit(int status);

ou status est le code de retour du processus

@ La fonction de bibliothéque exit(3) permet d’exécuter une partie de code
associée au processus par la fonction atexit(3)

#include <stdlib.h>
void exit(int status);
int atexit(void (xfunction)(void));

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 56

Processus Terminaison

Terminaison normale

@ Durant son exécution le processus effectue un appel direct ou indirect a la
primitive _exit(2)

#include <unistd.h>
void _exit(int status);

ou status est le code de retour du processus

@ La fonction de bibliothéque exit(3) permet d’exécuter une partie de code
associée au processus par la fonction atexit(3)

#include <stdlib.h>
void exit(int status);
int atexit(void (xfunction)(void));

@ Dans un programme C, terminer la fonction main() avec I'instruction
return expression; est équivalent a appeler exit() avec la valeur de
'expression en argument.

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 56

Processus Attente de la fin d’un processus fils

Attente de la fin d’un processus fils

Arnaud GIERSCH (IUT-NFC. Programmation Systé

Processus Attente de la fin d’'un processus fils

Attente de la fin d’'un processus fils

@ |l est souvent utile qu’un processus pére ne reprenne son exécution
gu’apres la fin du processus fils

@ Fonctionnement classique du shell lorsqu’'une commande est exécutée en
avant plan

@ Le primitive wait() permet de mettre en attente un processus jusqu’a la fin
d’un de ses processus fils

@ Si un processus fils s’est terminé avant I'appel de wait() le pére n’est pas
mis en attente

@ Synchronisation du pére par la fin du fils

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 58

Processus Attente de la fin d’'un processus fils

Attente de la fin d’'un processus fils

@ Lorsqu’un processus se termine, toutes ses ressources sont libérées;
seul son descripteur est conservé car il contient son code de retour

@ Le processus est dans I'état zombie jusqu’a ce que son pére exécute
wait() pour obtenir son code de retour
@ Code de retour :
fin normale valeur retournée par la fonction main() ou passée en
parametre a la primitive exit()
fin anormale numéro du signal ayant provoqué la fin du processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 59

Processus Attente de la fin d’un processus fils

Primitive wait ()

#include <sys/wait.h>
pid_t wait(int *status);

Résultat retourné :
@ -1 en cas d’erreur, ou si le processus n’a pas de fils
@ le PID d'un processus fils qui s’est terminé

@ si status n’est pas NULL, alors *status contiendra le code de retour du
processus

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Attente de la fin d’un processus fils

Primitive wait ()

#include <sys/wait.h>
pid_t wait(int *status);

Résultat retourné :
@ -1 en cas d’erreur, ou si le processus n’a pas de fils
@ le PID d'un processus fils qui s’est terminé

@ si status n’est pas NULL, alors *status contiendra le code de retour du
processus

Autres primitives

pid_t waitpid(pid_t pid, int *status, int options);
int waitid(idtype_t idtype, id_t id, siginfo_t «infop, int options);

@ Voir les pages du manuel en ligne : man 2 wait

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Attente de la fin d’un processus fils

Code de retour

Les macros suivantes permettent d’examiner la valeur du code de retour :
WIFEXITED(status) vrai si le processus s’est terminé normalement

WEXITSTATUS(status) code de retour du processus (8 bits de poids faible de
status)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Attente de la fin d’'un processus fils

Code de retour

Les macros suivantes permettent d’examiner la valeur du code de retour :
WIFEXITED(status) vrai si le processus s’est terminé normalement

WEXITSTATUS(status) code de retour du processus (8 bits de poids faible de
status)

WIFSIGNALED(status) vrai si le processus a été terminé par un signal
WTERMSIG(status) numéro du signal ayant terminé le processus

WCOREDUMP(status) vrai si une image mémoire du processus a été créée
(fichier core)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Attente de la fin d’'un processus fils

Code de retour

Les macros suivantes permettent d’examiner la valeur du code de retour :
WIFEXITED(status) vrai si le processus s’est terminé normalement

WEXITSTATUS(status) code de retour du processus (8 bits de poids faible de
status)

WIFSIGNALED(status) vrai si le processus a été terminé par un signal
WTERMSIG(status) numéro du signal ayant terminé le processus

WCOREDUMP(status) vrai si une image mémoire du processus a été créée
(fichier core)

WIFSTOPPED(status) vrai si le processus a été arrété par un signal
WSTOPSIG(status) numéro du signal ayant causé I'arrét
WIFCONTINUED(status) vrai si le processus a été relancé par SIGCONT

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Attente de la fin d’'un processus fils

Exemple wait () (1/3)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(void)
{
pid_t fils, processus, pere;
int i, status;
i=1;
fils = fork();
switch (fils) {
case —1:
fprintf(stderr,"Pere : echec du fork\n");
return EXIT_FAILURE;
break;
[t ¥

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 62

Processus Attente de la fin d’un processus fils

Exemple wait () (2/3)

Ve
case O : /processus fils
processus = getpid();
pere = getppid();
printf("Processus fils : mon no = %d mon pere = %d\n", processus, pere);
printf("Processus fils : i = %d\n",i);
i=10;
printf("Processus fils : i = %d\n",i);
return 0;
} // switch

VAR

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Attente de la fin d’'un processus fils

Exemple wait () (3/3)

[*.. ¥
// Processus pere
processus = getpid();
pere = getppid();
// Attente du fils
fils = wait (&status);
printf("Processus pere : mon no = %d mon pere = %d\n", processus, pere);
printf("Processus pere : i = %d\n",i);
printf("Processus pere : mon fils %d s’est terminé \n", fils);
if (WIFEXITED(status))
printf("Processus pere : mon fils s’est terminé normalement"\
" avec le code %d\n", WEXITSTATUS(status));
if (WIFSIGNALED(status))
printf("Processus pere : mon fils s’est terminé anormalement"\
" avec le signal %d\n", WTERMSIG(status));
return EXIT_SUCCESS;

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 64

Processus Attente de la fin d’'un processus fils

Exemple wait () : exécution

$./exemple_) walt

Processus fils : mon no = 3954122 mon pere = 3954121
Processus fils : 1 =1
Processus fils : i = 160
Processus pere : mon no
Processus pere : i1 =1
Processus pere : mon fils 3954122 s'est termineé

Processus pere : mon fils s'est terminé normalement avec le code ©

s

3954121 mon pere = 3954113

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Recouvrement (exec)

Recouvrement (exec)

Arnaud GIERSCH (IUT-NFC. Programmation Systé

Processus Recouvrement (exec)

Recouvrement de processus par le chargement d’un fichier

exécutable

@ fork : duplique un processus existant mais ne permet pas de créer un
nouveau processus exécutant un nouveau segment de code

@ Les primitives de la famille exec permettent de remplacer les segments de
code, données et pile par le chargement en mémoire d’'un fichier binaire

@ Le segment systéme n’est pas modifié, I’'héritage du fork est donc
préservé

@ Les descripteurs de fichiers, sauf ceux ouverts avec O_CLOEXEC, sont
toujours valides ce qui permet les redirections

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Recouvrement (exec)

La primitive de recouvrement : execve ()

@ Cest la seule primitive (fonction exécutée par le systeme d’exploitation)
permettant de charger en mémoire un fichier binaire

@ Prototype :

#include <unistd.h>
int execve(const char *pathname, char const argv[], char const envpl]);

@ Cette primitive, lorsqu’elle est exécutée par un processus, provoque la
modification des segments de code, données, pile par le contenu d’un
fichier binaire

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 68

Processus Recouvrement (exec)

execve ()

@ Parametres

pathname chemin d’accés du fichier binaire
argv tableau de chaines de caractéres qui seront transmises
comme argument (le tableau doit étre terminé par un
pointeur NULL)
envp tableau de chaines de caractéres de la forme "NoM=valeur",
constituant I'environnement du processus (le tableau doit
étre terminé par un pointeur NULL)

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 69

Processus Recouvrement (exec)

execve ()

@ Parametres

pathname chemin d’accés du fichier binaire

argv tableau de chaines de caractéres qui seront transmises
comme argument (le tableau doit étre terminé par un
pointeur NULL)

envp tableau de chaines de caractéres de la forme "NoM=valeur",
constituant I'environnement du processus (le tableau doit
étre terminé par un pointeur NULL)

@ Résultat retourné

e En cas de succeés cette primitive ne revient pas car le segment de code
initial est détruit

e En cas d’échec execve retourne -1 et errno contient un code d’erreur
indiquant les raisons

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 69

Processus Recouvrement (exec)

execve (), remarques

@ La variable PATH est une variable du SHELL, elle n’est pas utilisée pour
trouver le fichier binaire dans I'arborescence il est donc obligatoire
d’utiliser un chemin d’accés pour le fichier

@ Ce fichier doit étre exécutable pour le propriétaire effectif du processus
(droit x)

@ Si ce fichier binaire posséde un des bits de prise d’identité du propriétaire
(setuid) ou du groupe (setgid) positionné les identificateurs de propriétaire
ou de groupe effectifs deviennent le propriétaire ou le groupe du fichier

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 70

Processus Recouvrement (exec)

Caractéristiques du processus résultant

Tous les attributs du processus initial sont réservés, sauf :

@ Les signaux pour lesquels le processus avait placé un gestionnaire sont
réinitialisés a leur valeur par défaut (consultez signal(7))

@ Léventuelle pile spécifique pour les gestionnaires de signaux n’est pas
conserveée (sigaltstack(2))

Les projections en mémoire ne sont pas conservées (mmap(2))
Les segments de mémoire partagée System V sont détachés (shmat(2))
Les objets de mémoire partagée POSIX sont supprimés (shm_open(3))

Les descripteurs de files de messages POSIX ouverts sont fermés
(mqg_overview(7))

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Recouvrement (exec)

Caractéristiques du processus résultant

@ Les sémaphores nommés POSIX ouverts sont fermés (sem_overview(7))

@ Les temporisations POSIX ne sont pas conservées (timer_create(2))

@ Les flux de répertoires ouverts sont fermés (opendir(3))

@ Les verrouillages de mémoire ne sont pas préservés (mlock(2),
mlockall(2))

@ Les gestionnaires de terminaison ne sont pas préservés (atexit(3),
on_exit(3))

@ Lenvironnement de travail en virgule flottante est remis a zéro (consultez
fenv(3))

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 72

Processus Recouvrement (exec)

Exemple : exécution de 1s

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[])

{
char =arg[4];
char senv[] = {NULL};
if (argc 1=2) {
fprintf(stderr, "Usage: $%s répertoire\n", argv[0]);
return EXIT_FAILURE;
1
arg[0] = "1s"; /+ création du tableau d’arguments %
arg[1]="-1";
arg[2] = argv[1];
arg[3] = NULL;
execve("/bin/1s", arg, env); /+ exécution de /bin/ls %
perror("execve"); /+ execve() ne retourne qu’en cas d’erreur %/
return EXIT_FAILURE;
}
Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026 p. 73

Processus Recouvrement (exec)

Les fonctions de bibliotheque de recouvrement

@ Elles sont au nombre de 6 que I'on peut séparer en deux groupes

o Les fonctions execl. .. admettant en parameétres une liste de parametres
de type char* terminées par NULL

o Les fonctions execv. .. admettant en parameétres un tableau de pointeur
sur des caractéres

@ Lorsqu’elles se terminent par p, la variable PATH de I'environnement est
utilisée pour trouver le fichier exécutable

@ Lorsqu’elles se terminent par e, un environnement est transmis

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéeme 2025-2026 p. 74

Processus Recouvrement (exec)

Les fonctions de bibliotheque de recouvrement

#include <unistd.h>

int execl(const char *pathname, const char +arg, ...
/* (char) NULL ¥#);

int execlp(const char file, const char +arg, ...
/#, (char) NULL ¥#);

int execle(const char *pathname, const char *arg, ...
/# (char *) NULL, char sconst envp[] #);

int execv(const char «pathname, char *const argv[]);
int execvp(const char +file, char const argvf[]);
int execvpe(const char +file, char »const argv[], char const envpl]);

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Recouvrement (exec)

Les fonctions de bibliotheque de recouvrement

@ Comme execve toutes ces fonctions ne retournent pas en cas de succes
puisque le segment de code original est remplacé par le segment de code
issu du chargement du fichier binaire

@ Elles retournent -1 en cas d’erreur
@ errno contient le code d’erreur
@ perror() peut donc étre appelé pour afficher le message d’erreur systéme

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

Processus Recouvrement (exec)

Exemple : execlp ()

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char =argv([])

{

if (argc 1= 2) {
fprintf(stderr, "I1 manque le nom du fichier\n");
return EXIT_FAILURE;

}

else {
execlp("wc", "wc", "—c", "-m", "~1" "—y" argv[1], (chars)NULL);
fprintf(stderr, "Echec de la primitive execlp\n");
return EXIT_SUCCESS ;

}

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme

2025-2026

Processus Recouvrement (exec)

Exemple : execv ()

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char =argv[])
{
char =arg[4];
if (argc 1=2) {
fprintf(stderr, "Usage: $%s répertoire\n", argv[0]);
return EXIT_FAILURE;
}
arg[0] = "1s"; /+création du tableau d’arguments %
arg[1]="-1";
arg[2] = argv[1];
arg[3] = NULL;
execv("/bin/1s", arg); /+ exécution de /bin/ls »
perror("execv"); /* execv() ne retourne qu’en cas d’erreur ¥/
return EXIT_FAILURE;

Arnaud GIERSCH (IUT-NFC, UMLP) Programmation Systéme 2025-2026

