Introduction aux systèmes informatiques Introduction générale

Michel Salomon

IUT de Belfort-Montbéliard Département d'informatique

Objectifs et organisation

Objectifs

- Savoir utiliser un (des) système(s) informatique(s);
- 2 en appréhender le fonctionnement

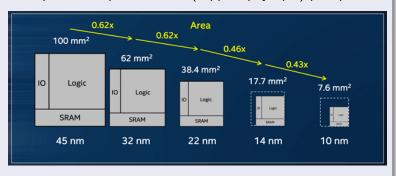
Organisation

- Module en deux parties
 - Système d'exploitation (7 sem. M. Fouzi)
 - 2 Fonctionnement interne d'un ordinateur (6 sem. M. Salomon)
- Modalités de Contrôle des Connaissances
 - Chaque partie comptera pour 50% de la note du module
 - Au moins 2 contrôles dans cette partie

Décrire ce qu'est un ordinateur n'est pas aisé

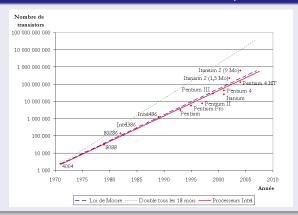
- Grande variété d'ordinateurs
 - Netbook
 - Tablette tactile
 - etc.
 - Super-ordinateur
- Rapidité des évolutions technologiques

Illustration par la Loi de Moore (1975)


- Postulait initialement le doublement du nombre de transistors des microprocesseurs tous les 2 ans;
- entre 1971 et 2001 doublement tous les 1,96 années;
- "relativement" exacte jusqu'en 2012, depuis ralentissement (phénomène quantique : effet tunnel → limite de miniaturisation);
- version plus commune : doublement d'une grandeur (puissance, capacité, etc.) tous les 18 à 24 mois

On approche des limites de la technologie actuelle des semi-conducteurs Our limit to visibility goes out ~10 years TECHNOLOGY GENERATION 2017 2014 Beyond 2013 2007 2009 2011 2020 MANUFACTURING DEVELOPMENT Carbon Nanotube ~1nm diameter Graphene 1 atom thick **QW III-V Device** Nanowire Not to scale 10 atoms across

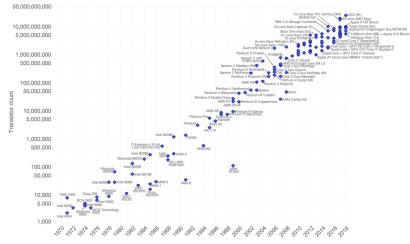
Pourquoi réduire la finesse de gravure?


Une gravure plus fine permet d'augmenter la densité des transistors

Une même micro-architecture (même nombre de transistors)
 → implémentée par un "Die" (support physique) plus petit

- Une même taille de "Die" (plus de transistors disponibles)
 - → implémenter une micro-architecture plus performante

Loi de Moore versus nombre de transistors des proc. Intel (Wikipédia)


Corollaire de la loi de Moore \rightarrow loi de Wirth (1995)

Le logiciel ralentit plus vite que le matériel n'accélère

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

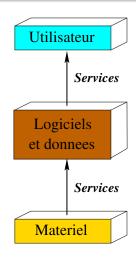
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Domaine au croisement de nombreuses compétences

- Électronique
- Programmation système ou applicative
- Réseaux
- Mathématiques
- etc.

Nombreux principes de base communs à tout système informatique

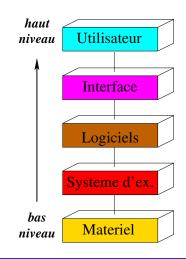

- Le type et la représentation des informations
- La manière dont les composants internes dialoguent
- etc.

Qu'est-ce qu'un système informatique?

Système informatique = ensemble de matériels et de logiciels

Description simplifiée en couches

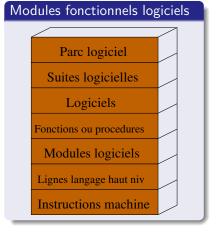
- L'utilisateur dispose de services
 - la navigation Internet Web;
 - le traitement de texte :
 - etc.
- grâce à des applications
 - implémentées par des logiciels;
 - traitant des données en entrée;
 - produisant des données en sortie;
- exécuté(e)s "par" du matériel



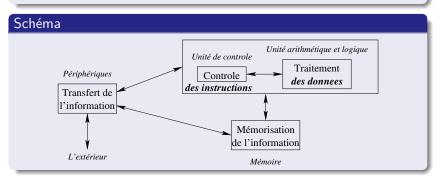
Qu'est-ce qu'un système informatique?

Système informatique = ensemble de matériels et de logiciels

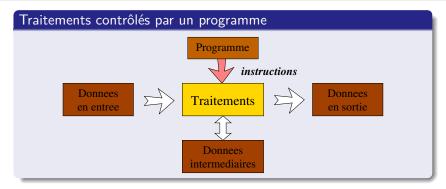
Description évoluée en couches


- Ajout de couches intermédiaires
 - Fonctionnalités étendues
 - Isole les services "utilisateur" des couches de bas niveau
- L'interface
 - Fenêtres
 - Menus
 - Aide contextuelle
- Le système d'exploitation
 - Gestion de la mémoire
 - Gestion des périphériques
 - Arbitrage des ressources

Qu'est-ce qu'un système informatique?


Système informatique = ensemble de matériels et de logiciels

Modules fonctionnels matériels Internet Reseau local Ordinateur Cartes Circuits integres Portes logiques **Transistors** Semi-conduct



Description fonctionnelle d'un système informatique

- Un système informatique manipule de l'information
- Un système informatique assure les fonctions suivantes :
 - le traitement de l'information;
 - la mémorisation de l'information ;
 - le transfert de l'information ;
 - le contrôle des opérations spécifiées par l'utilisateur via de l'information (un programme = suite d'instructions)

Un système informatique est un système programmable

Traitements sur les données

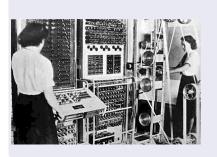
- Calculs arithmétiques (addition, soustraction, etc.)
- Calculs booléens (et, ou, etc.)
- Rupture de séquence en fonction d'un résultat
- Mise en forme des données

Les prémices de l'ordinateur

- Mécanisation du calcul arithmétique
 - Machine de Pascal (1642) : addition et soustraction ;
 - Machine de Leibniz (1673) : ajoute division et multiplication
- Construction de machines commandées par des programmes
 - Cartons perforés commandant un métier à tisser (1805)
- La machine analytique de Babbage (1833)
 - Convergence des machines à calculer et commandées
 - Premier calculateur programmable
 - Contient l'essentiel des concepts des ordinateurs modernes
- Les théories mathématiques
 - Système binaire introduit par Leibniz (1677)
 - Algèbre de Boole (1854)
 - Turing (1936) énonce les principes d'une machine théorique universelle en vue de définir le concept d'algorithme
 - Shannon (1938) lie système binaire, algèbre de Boole et signaux électriques; popularise le terme *binary digit* (1948)

Naissance de l'ordinateur - période 1939-1945

- Machines électromécaniques
 - Z3 (1941) → machine digitale sans doute *Turing-complète*
 - IBM (Harward) Mark 1 (1944)
- Premiers ordinateurs "électroniques"
 - Atanasoff-Berry Computer (1942) \rightarrow non prog., pas *Turing-complet*
 - ullet Colossus Mark 1 (1943), Mark 2 (1944) o pas Turing-complet


Premier "vrai" ordinateur électronique : l'ENIAC (1943-1945)

l'Electronic Numerical Integrator And Calculator

- Conçu par Eckert et Mauchly à l'Université de Pennsylvanie
- Entièrement électronique, programmable, Turing-complet
- Opérations réalisées dans des circuits électriques via des interrupteurs (tubes à vide) contrôlés électriquement
- 18000 tubes à vide, 30 tonnes et une surface de 72 m^2
- Multiplie 2 nombres de 10 chiffres en 3 millisecondes

Michel Salomon

Colossus (à gauche) et ENIAC (à droite) (Wikipédia)

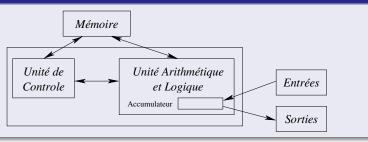
Avant fin 1945 John von Neumann propose une architecture (Turing - 1936)

- Architecture interne d'un calculateur universel (ordinateur)
- Définie en travaillant sur l'EDVAC avec Eckert et Mauchly
- Ordinateur à programme enregistré (instructions et données)

Invention du transistor en 1947

Générations d'ordinateur

- ullet 1^{re} gén. d'ordinateur o utilisation de l'architecture dite de von Neumann
 - Manchester Mark 1 (1949)
 - l'Electronic Discrete Variable Automatic Computer (1949)
 - Apparition de supports de stockage et du terme "ordinateur"
- ullet 2^e gén. d'ordinateur o intégration des transistors
 - TRADIC des Bell Labs (1954)
 - IBM 7044 (1958) avec 64 Koctets de mémoire
 - Apparation du terme "informatique" (information automatique)
- 3^e gén. d'ordinateur \rightarrow utilisation de circuits intégrés
- 4^e gén. d'ordinateur → microprocesseur
 - Intel 4004 (1971) avec 2300 transistors


Architecture de von Neumann

Caractéristiques de l'ordinateur

- Une machine universelle contrôlée par un programme
- Instructions et données sont codées sous forme binaire et enregistrées en mémoire
- Programme pouvant "modifier" ses instructions
 - Exécutées en séquence (une après l'autre)
 - mais existence d'instructions de rupture de séquence
- 5 composants essentiels :
 - 1 une Mémoire
 - contient instructions et données;
 - 2 une Unité Arithmétique et Logique
 - réalise les calculs;
 - o une Unité de Contrôle ou de commande
 - contrôle les opérations réalisées;
 - 4 et des unités d'Entrées / Sorties
 - permettent d'échanger des informations avec les périphériques

Architecture de von Neumann

Schéma

L'Unité de Contrôle

- extrait une instruction de la mémoire;
- l'analyse;
- 3 recherche les données en mémoire;
- demande l'exécution de l'instruction dans l'UAL ou une E/S;
- o range le résultat dans la mémoire

Architecture des ordinateurs actuels

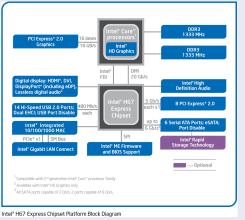
- Raffinement du schéma de von Neumann
 - Accès "direct" à la mémoire par les périphériques
- On distingue 3 composants :
 - 1'unité centrale de traitement (Central Processing Unit) ou processeur (on utilise également le terme microprocesseur)
 - 2 la mémoire centrale ou principale
 - Contient programmes et données
 - Deux types de mémoire :
 - mémoire morte (Read Only Memory) lecture seule
 - mémoire vive (Random Access Memory) lecture/écriture
 - 3 les interfaces d'Entrées/Sorties
 - Lien entre le processeur et les périphériques externes/internes
 - Périphériques :
 - disque dur;
 - carte graphique;
 - etc.

Composants et périphériques reliés par des bus de communication

Core i7 de 1^{re} gén. (Nehalem / Westmere) - LGA 1366 / Socket B - 2008 DDR3 memory 8.5 Gb/s Intel® Core™ i7 Processor DDR3 memory 8.5 Gb/s DDR3 memory 8.5 Gb/s OPI (25.6 GB/s) PCI Express* 2.0 Graphics Support for up to Multi-card configurations: 36 lanes 1x16, 2x16, 4x8 or 2 GB/s DMI 12 Hi-Speed USB 2.0 Ports: RO Mh/s Intel®High Definition Audio Dual EHCI: USB Port Disable 6 Serial ATA Ports: eSATA: 6 PCI Express* x1 Port Disable each x Intel® Integrated 10/100/1000 MAC Intel® Turbo Memory with User Pinning

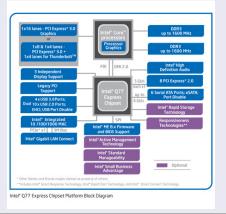
Land Grid Array: proc. comportant une matrice de contacteurs

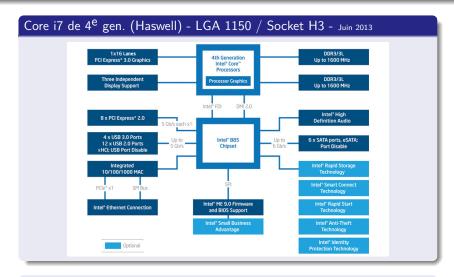
BIOS Support


Intel® Extreme Tuning
Support

Intel® Gigabit LAN Connect

Intel® X58 Express Chipset Block Diagram

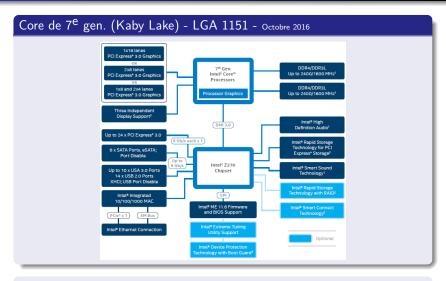

···· Optional



Puce réunissant contrôleur mémoire, cœur graphique et processeur

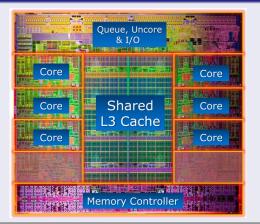

Core i7 de 3^e gen. (Ivy Bridge) - LGA 2011 / Socket R - Avril 2012


Sandy Bridge(-E) \rightarrow 32 nm; Ivy Bridge \rightarrow 22 nm

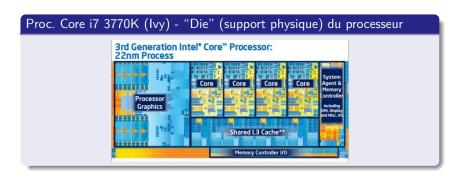


Gravure de 22 nm et optimisation de l'économie d'énergie

Gravure de 14 nm comme la 5^e gen. (Broadwell)

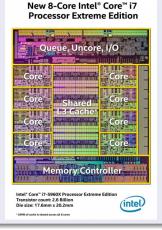


Les récentes 8^e et 9^e gen. comportent plusieurs micro-architectures

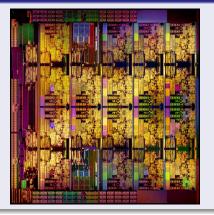

Core de 8^e et 9^e gen. (Coffee Lake Refresh) - LGA 1151 - Fin 2018 INTEL® Z390 CHIPSET BLOCK DIAGRAM

- ullet 8e gen. o Coffee Lake (14 nm++), Kaby Lake Refresh (14 nm++)
- ullet gen. o Coffee Lake Refresh (14 nm++), Cannon Lake (10 nm)
- 10^{e} gen. \rightarrow Ice Lake (10 nm+)

Proc. Core i7 3960X (Sandy E) - "Die" (support physique) du processeur

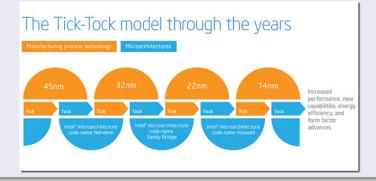

Q4'11 - Cache commun ightarrow 15 Mio ; Turbo Boost ightarrow 3/3/4/5/6/6

Q2'12 - Cache partagé ightarrow 8 Mio ; 3.5/3.9 GHz ; PCle Gen 3.0 ; 77 W

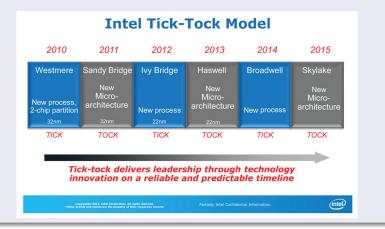

Ivy Bridge est le "Tick" associé au "Tock" Sandy Bridge

Proc. Core i7 5960X (Haswell-E) - "Die" (support physique) du proc.

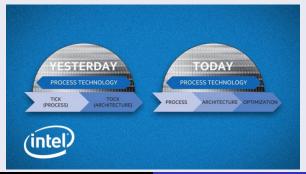
Q3'14 - Cache partagé ightarrow 20 Mio ; 3.0/3.5 GHz ; PCle Gen 3.0 ; DDR4 ; 140 W


Proc. Core i9 7980XE (Skylake-X) - "Die" (support physique) du proc.

Q3'17 - Cache partagé ightarrow 24,75 Mio ; 2.60/4.4 GHz ; PCle Gen 3.0 ; DDR4 ; 165 W


Modèle "Tick-Tock"

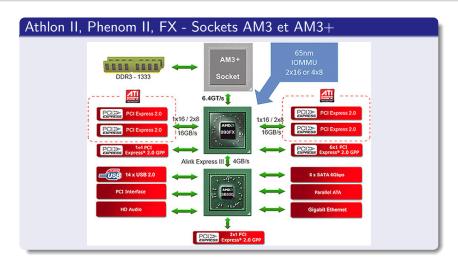
- Tick → évolution de la finesse de gravure (réduction du "die")
- Tock \rightarrow évolution de la micro-architecture


Modèle "Tick-Tock"

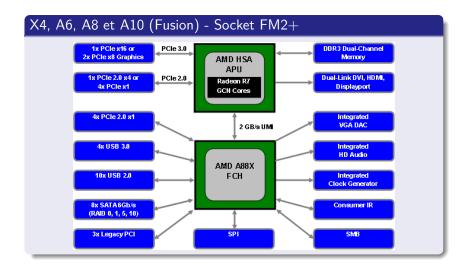
- Tick → évolution de la finesse de gravure (réduction du "die")
- Tock → évolution de la micro-architecture

Intel met fin au modèle "Tick-Tock" en mars 2016

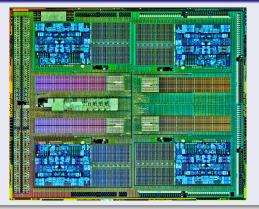
- Difficulté de mise en production de la gravure 10 nm
- Nombreuses "générations" avec la finesse de gravure 14 nm
- Optimisation portant surtout sur le multimédia
 - Traitement de formats vidéos 10 bit H.265/HEVC, VP9
 - etc.


Intel met fin au modèle "Tick-Tock" en mars 2016

- Difficulté de mise en production de la gravure 10 nm
- Nombreuses "générations" avec la finesse de gravure 14 nm
- Optimisation portant surtout sur le multimédia
 - Traitement de formats vidéos 10 bit H.265/HEVC, VP9
 - etc.

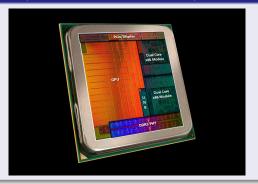

 8^{e} gen. \rightarrow Coffee Lake / Kaby Lake Refresh (14 nm), etc. 9^{e} gen. \rightarrow Coffee Lake Refresh (14 nm), Cannon Lake (10 nm)

Architecture d'une carte mère pour processeurs AMD

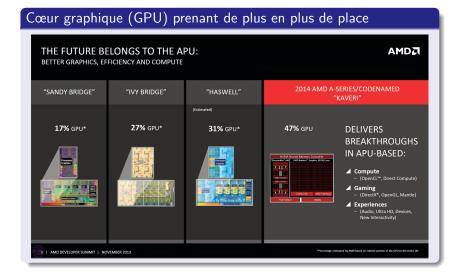

Objectif de l'intégration : réduire les coûts et maximiser les perf.

Architecture d'une carte mère pour processeurs AMD

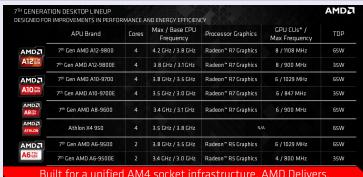
Micro-architectures Piledriver (32 nm) et Steamroller (28 nm)


Proc. FX9590 (Piledriver - AM3+) - "Die" (support physique) du proc.

Q2'13 - Cache commun ightarrow 8 Mio ; Turbo Core ightarrow 4.7/4.8/5.0 GHz ; 220 W


Micro-architectures Piledriver (32 nm) et Steamroller (28 nm)

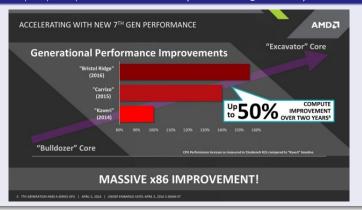
Proc. A10-7850K (Steamroller "Kaveri" - FM2+) - "Die" du proc.


Q1'14 - "Pas" de cache commun; 3.7/4.0 GHz; 95 W

Micro-architectures Piledriver (32 nm) et Steamroller (28 nm)

Micro-architecture Excavator (28 nm)

Proc. A6/A8/A10/A12 et Athlon X4 (Bristol Ridge - AM4)



Accelerated Processing Unit (CPU+Graphics Processing Unit)

- 2015 APU Carrizo → laptop et mobile; DDR3; ...
- 2016 APU Bristol Ridge et Stoney Ridge → DDR4; ...

Micro-architecture Excavator (28 nm)

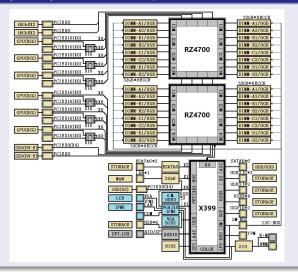
Proc. A6/A8/A10/A12 et Athlon X4 (Bristol Ridge - AM4)

Accelerated Processing Unit (CPU+Graphics Processing Unit)

- 2017 Fin de Bulldozer Series (Bristol Ridge et Stoney Ridge)
- Depuis Zen Series (Ryzen \rightarrow desktop et Epyc \rightarrow server)

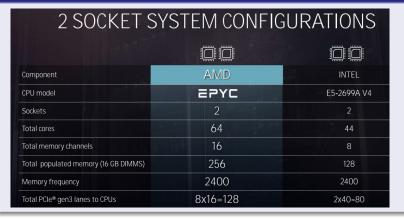
Micro-architecture Zen (14 nm) - Desktop

Proc. Ryzen 3/5/7 (AM4) et Threadripper (TR4) - 14 nm et 12 nm


Roadmap AMD pour les générations Zen

- ullet 2018 Zen+ (12 nm) / 2019 Zen 2 ightarrow 7 nm (I/O ightarrow 12 ou 14 nm)
- 2020/2021? Zen 3 (7 nm+) /? Zen 4 (6 nm)

Michel Salomon


Micro-architecture Zen (14 nm) - Datacenter / Server

Proc. Epyc (Naples) - exemple de diagramme bi-proc. avec chipset X399

Micro-architecture Zen (14 nm) - Datacenter / Server

Proc. Epyc (Naples) - plateforme concurrente du Xeon d'Intel

AMD **S**ystem **O**n **C**hip \rightarrow intégration de fonctionnalités du *chipset*

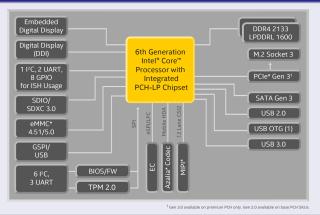
Micro-architecture Zen2 (7 nm) - Datacenter / Server

Proc. Epyc (Rome) versus Proc. Intel Xeon Cascade Lake

EPYC 7742

- 64 cœurs 225 W
 (8 chiplets de 8 cœurs)
- 58.5 mm × 75.4 mm
- coût > 7000\$

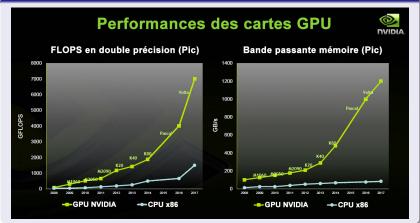
Xeon Platinum 9282



- 56 cœurs 400 W
- 76.0 mm × 72.5 mm
- coût > 10000 \$?

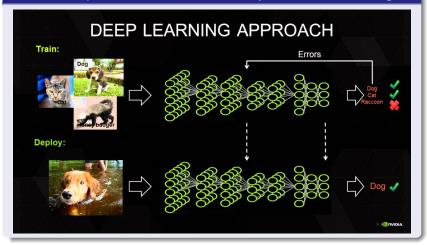
Passage d'une architecture monolitique au multi-die

Plateforme embarquée / mobile (System on Chip)

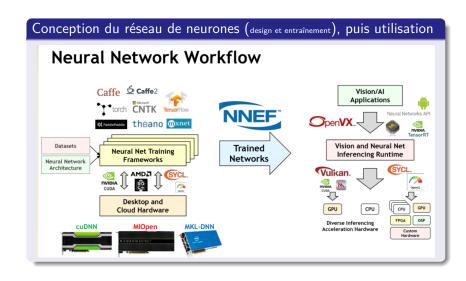

Processeur de type Intel Skylake-U

Intégration poussée à l'extrême o disparition du *chipset*

Utilisation de GPUs pour du calcul haute performance

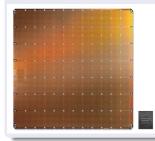


Utilisation en intelligence artificielle


Implémentation de réseaux de neurones profonds (Deep Learning)

Qu'est-ce que le Deep Learning?

Illustration : problème de reconnaissance / classification d'image


Qu'est-ce que le Deep Learning?

Processeurs optimisés pour le Deep Learning

Émergence de nombreux processeurs spécialisés - Al-focused chips

- Intel Nervana Neural Network Processors (NNP)
- Google Tensor Processing Unit (TPU)
- Amazon AWS Inferentia
- NVIDIA Deep Learning Accelerator (NVDLA)
- Cerebras Wafer Scale Engine (WSE)

- 21,5 cm de large
- 400000 cœurs et 18 Gio de mémoire
- 56 fois plus grand que le plus grand GPU actuel
- 1200 milliards de transistors (GPU 21,1 milliards)

Plan du cours

- Introduction générale
- 2 Représentation interne des informations
 - Codage des entiers et arithmétique associée
 - Codage des réels
 - Codage des caractères
- Structure d'un ordinateur