

TD2 - Numération, changement de base

1 Numération

On considère la base 13.

- ① Donner l'ensemble des chiffres de ce système de numération.
- ② Donner en comptant en base 13 la représentation dans cette base des nombres décimaux 6, 17 et 25.
- 3 Combien de nombres peut-on représenter avec 4 chiffres et donner l'expression permettant de calculer la valeur décimale (en base 10) d'un tel nombre $c_3c_2c_1c_0$.

Correction

- ① Dans un système de base b, un nombre est représenté par la suite de chiffres $c_n c_{n-1} \dots c_0$ telle que $(c_i)_{10} \in \{0, \dots, b-1\}$. Chaque c_i ne devant correspondre qu'à un seul chiffre, lorsque $(c_i)_{10} \geq 10$ on utilise une lettre majuscule comme chiffre en commençant avec A. En base 13 on a donc $c_i \in \{0, 1, 2, \dots, 9, A, B, C\}$.
- 2 Représentation de nombres décimaux

Decimal	Base 13	Decimal	Base 13
0	0	14	11
1	1	15	12
2	2	16	13
3	3	17	→ 14
4	4	18	15
5	5	19	16
6	→ 6	20	17
7	7	21	18
8	8	22	19
9	9	23	1A
10	A	24	1B
11	В	25	→ 1C
12	C	26	20
13	10	27	21

③ Chaque chiffre $c_i \in \{0, 1, 2, \dots, 9, A, B, C\}$, il peut donc prendre 13 valeurs possibles. Aussi, un nombre $c_3c_2c_1c_0$ aura $13 \times 13 \times 13 \times 13 = 13^4 = 28561$ valeurs possibles. Calcul de la valeur décimale N correspondant à $c_3c_2c_1c_0$ en base 13.

$$(c_3c_2c_0c_1)_{13} = (c_3)_{10} \times 13^3 + (c_2)_{10} \times 13^2 + (c_1)_{10} \times 13^1 + (c_0)_{10} \times 13^0 = N$$

= $(c_3)_{10} \times 2197 + (c_2)_{10} \times 169 + (c_1)_{10} \times 13 + (c_0)_{10} \times 1 = N$

- c_3 a pour poids 2197; — c_2 a pour poids 169;
- c_1 a pour poids 13;
- c_0 a pour poids 1.

2 Changement de base

2.1 Conversions en base 10

Donner la valeur décimale des nombres entiers suivants :

- ① 1011110_2 et 1101011_2 ;
- ② 57621_8 et 2403_8 ;
- $3 A6B37_{12}$;
- 4 $DE75_{16}$ et $9F4E_{16}$.

Correction

1

$$101110_{2} = 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1}$$

$$= 32 + 8 + 4 + 2$$

$$= 46_{10}$$

$$1101011_2 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0$$
$$= 64 + 32 + 8 + 2 + 1$$
$$= 107_{10}$$

2

$$57621_8 = 5 \times 8^4 + 7 \times 8^3 + 6 \times 8^2 + 2 \times 8^1 + 1 \times 8^0$$

$$= 5 \times 4096 + 7 \times 512 + 6 \times 64 + 2 \times 8 + 1 \times 1$$

$$= 20480 + 3584 + 384 + 16 + 1$$

$$= 24465_{10}$$

$$2403_8 = 2 \times 8^3 + 4 \times 8^2 + 0 \times 8^1 + 3 \times 8^0$$
$$= 1024 + 256 + 0 + 3$$
$$= 1283_{10}$$

3

$$A6B37_{12} = (A)_{10} \times 12^{4} + (6)_{10} \times 12^{3} + (B)_{10} \times 12^{2} + (3)_{10} \times 12^{1} + (7)_{10} \times 12^{0}$$

$$= 10 \times 12^{4} + 6 \times 12^{3} + 11 \times 12^{2} + 3 \times 12^{1} + 7 \times 12^{0}$$

$$= 10 \times 20736 + 6 \times 1728 + 11 \times 144 + 3 \times 12 + 7 \times 1$$

$$= 207360 + 10368 + 1584 + 36 + 7$$

$$= 219355_{10}$$

4

$$DE75_{16} = 13 \times 16^{3} + 14 \times 16^{2} + 7 \times 16^{1} + 5 \times 16^{0}$$

$$= 13 \times 4096 + 14 \times 256 + 7 \times 16 + 5 \times 1$$

$$= 53248 + 3584 + 112 + 5$$

$$= 56949_{10}$$

$$9F4E_{16} = 9 \times 16^{3} + 15 \times 16^{2} + 4 \times 16^{1} + 14 \times 16^{0}$$

$$= 9 \times 4096 + 15 \times 256 + 4 \times 16 + 14 \times 1$$

$$= 36864 + 3840 + 64 + 14$$

$$= 40782_{10}$$

2.2Convertir 319_{10} en bases 2 et 12

9₁₀ en bases 2 et 12

319
$$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$$
 159 $\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ 1 $\begin{vmatrix} 39 \end{vmatrix}$ $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$ 9 $\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ 1 $\begin{vmatrix} 4 \end{vmatrix}$ $\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ 0 $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$ $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ 1 $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$ 0

= 1001111111₂.

• On a donc $319_{10} = 1001111111_2$.

• On obtient $319_{10} = 227_{12}$.

2.3 Coder l'entier 3133 successivement en base 2, 8, 16; 294 en base 16

3133	1	3133	5	3133	13
1566	$\left \begin{array}{c}0\\1\end{array}\right $,		1
783 391	$\left \begin{array}{cc}1\\1\end{array}\right $	391	7		
195	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	371	,	195	3
97	1				
48	0	48	0		
24	0				
12	0			12	12
6 3	0	6	6		
3	1				
1	1				
0		0		0	

• On obtient ainsi pour 3133

$$\begin{array}{rcl} 3133 & = & 110000111101_2 \\ & = & 6 & 0 & 7 & 5_8 \\ & = & C & 3 & D_{16} \end{array}$$

• alors que pour 294 on a

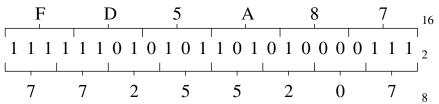
$$\begin{array}{rcl} 294 & = & 100100110_2 \\ & = & 1 & 2 & 6_{16} \end{array}$$

2.4 Donner la valeur décimale du nombre 11010, dans le cas d'un codage en base 2, 8 ou 16

- $11010_2 = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1 = 16 + 8 + 2 = 26_{10}$.
- $11010_8 = 1 \times 8^4 + 1 \times 8^3 + 1 \times 8^1 = 4096 + 512 + 8 = 4616_{10}$.
- $11010_{16} = 1 \times 16^4 + 1 \times 16^3 + 1 \times 16^1 = 65536 + 4096 + 16 = 69648_{10}$.

2.5 Conversion rapide hexadécimal vers binaire / octal et binaire vers octal / hexadécimal

• $FD5A87_{16}$ en bases 2 et 8



 $\bullet \ 10011010101_2$ en bases 8 et 16

