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Introduction



The moment of a real random variable is an indicator of the dispersion 
of this variable (expectation, standard deviation...)

Estimator: function allowing to estimate a moment of a probability 
law.

It is used to infer certain characteristics of a total population from 
a sample (survey).

Inferential statistics is used to define and use such estimators.

Estimator, inferential statistics



A good estimator of the population mean is the sample mean
It is unbiased, but not robust: an individual out of the ordinary will 
distort the estimate

On the other hand, the sample variance is a biased estimator of the 
population variance. The so-called empirical unbiased variance is to 
be preferred:

Estimator of mean, variance



The variance function of the statistics module (Python) is not the "usual" variance, but the 
unbiased empirical one: it is a statistics module. A "p" must be added as a prefix, to indicate 
that it is not a sample, but the complete population.

>>> from statistics import variance, pvariance, mean
>>> L=[1,2,3]
>>> sum([(L[i] - mean(L))**2 for i in range(n)])/n, pvariance(L)
(0.6666666666666666, 0.6666666666666666)
>>> sum([(L[i] - mean(L))**2 for i in range(n)])/(n-1), variance(L)
(1.0, 1)
>>>
>>> from statistics import stdev, pstdev

Estimator of mean, variance in python



Confidence intervals



● We have our estimator of the mean of a population, value obtained 
on a sample.

● We want to obtain a confidence interval where the true mean should 
probably be.

Confidence interval of a mean



We want to know the average height of 15-year-olds.

We have measured the height on a representative sample of these young 
people, and wish to deduce information on the whole population.

If we cannot find the exact average of the whole population, we can 
however provide an interval of values where it is likely to be found.

Confidence interval of a mean: example



Let a variable follow a normal 
distribution N(μ, σ)

The estimator of the mean is also 
a random variable that follows a 
distribution N(μ, σ/√n)

Distribution of the estimator



Let a variable follow a normal 
distribution N(μ, σ)

The estimator of the mean is also 
a random variable that follows a 
distribution N(μ, σ/√n)

=> reducing the estimation error 
by a factor of 2 (10) requires 
acquiring 4 (100) times more 
observations in the sample

Distribution of the estimator



If the variable is normal and σ² known, the distribution of the mean is a Gaussian distribution 
N(μ, σ√n), regardless of the sample size n.

If the variable is normal and σ² unknown (estimated by s²), which is the most frequent situation, the 
distribution of the mean depends on the sample size:

- If we have a large sample (n>30): the mean follows the law N(μ, s/√n)
- If we have a small sample: the mean follows a Student's t distribution with n-1 degrees of 

freedom

If the variable X is not normal but the sample size is large (n>30), the distribution of the mean is 
approximately described by :

- N(μ, σ/√n) distribution if the variance is known
- and N(μ, s/√n) if the variance is unknown, estimated by s².

Standard error of the sample mean (SEM): σ/√n, or s/√n when estimated.

Distribution of the estimator



Confidence interval of a mean: python

The t-distribution approach is used when small samples (n<30) are involved:

>>> import scipy.stats as st
>>> from statistics import mean
>>> data = [10, 11, 10, 14, 16, 24, 10, 6, 8, 10, 11, 27, 28, 21, 13, 
10, 6, 7, 8, 10]
>>> mean(data)
13
>>> st.t.interval(alpha=0.95, df=len(data)-1, loc=mean(data), 
scale=st.sem(data))
(9.847638214228208, 16.15236178577179)

95% confidence interval of the mean of the 
population



Confidence interval of a mean: python

The normal distribution approach is used when larger samples (n>30) are involved:

>>> import numpy as np
>>> import scipy.stats as st
>>> data = np.random.randint(15, 20, 80)
>>> st.norm.interval(alpha=0.95,
...              loc=np.mean(data),
...              scale=st.sem(data))
(16.43912334233635, 17.06087665766365)

95% confidence interval of the mean of the 
population



General information on 
hypothesis testing



An inference process that allows to check the validity of hypotheses 
related to one or more populations from the study of one or more 
random samples.

We want to determine (with a given probability) if the differences 
observed in the samples are either :
- attributable to chance,
- large enough to indicate that the samples are likely to be from 

different populations.

Hypothesis testing



The null hypothesis H0 is the working hypothesis, which we wish to 
control.

It consists in saying that there is no difference between the compared 
parameters, or that the observed difference is not significant and is 
due to sampling fluctuations.

=> This is what we will reject (or not).

The alternative hypothesis H1: a hypothesis opposite or contrary to 
the null hypothesis.

The null and alternative hypothesis



We are trying to determine if the heart rate slows down during a blood 
draw.
H0: "Heart rate is the same before and after blood donation."
H1: "Heart rate is slower after blood donation".

We consider the education level of the pregnant women with their 
smoking status.
H0: "X and Y are independent".
H1: "X and Y are related".

Exemples of H0



Two types of errors are possible

Error of 1st kind: wrong rejection of H0

risk of rejecting the null hypothesis when it is true.

 

Error of the 2nd kind : wrong acceptance of H0

risk of accepting the null hypothesis when it is false.



Significance threshold α
H0 is chosen so that the error we are trying to avoid is the error 
of the first kind.

(The really interesting question is: should we reject H0?)

α: maximum first-species risk that one decides to accept.

The probability of falsely rejecting H0 must not exceed this 
threshold.

α is fixed by the user of the test, typically at 5%.

It must be small: we only want to reject the null hypothesis if we 
have enough evidence.

The value 1-α is called the confidence level of the test.



Not hospitalizing him when he is ill is more serious than 
hospitalizing him when he is not.

Hence...

H0: the patient needs to be hospitalized.
H1: the patient does not need to be hospitalized.

Example of the choice of H0



Power of a statistical test

=> probability of rejecting H0 right.

It is 1-β, where β is the 2nd species risk.



Test statistics

It is a function that depends on the sample and summarizes the 
information contained in it

Its value calculated on the sample, called the observed statistic, 
allows to accept or reject the null hypothesis:

- if the observed statistic belongs to a certain interval 
(critical zone) that depends on α, we reject H0,

- if it does not, we do not reject it.



The name of the tests
When the test statistic follows a given probability law under H0, this 
law is often the origin of the name of the test.

Since the same law can be found in several distinct tests, they partly 
have the same name:

- χ2 test of fit to a multinomial distribution, homogeneity, 
independence, Pearson's test;

- Fisher's F test of equality of two variances;
- Student's T test with one sample, with two independent samples...

These probability laws are often only useful for these tests.



p-value
● Rather than calculating the critical zone, we prefer to calculate a 

critical threshold called p-value (p), which is such that:
○ if p < α then we reject H0
○ otherwise we accept H0.

● It is the probability of obtaining test results at least as extreme 
as the result actually observed, assuming that the null hypothesis 
is correct.

● A very low p-value means that such an extreme observed result would 
be very unlikely under the null hypothesis.



p-value and rejection level

- p-value > 0.05:
H0 is not rejected (~so it can be accepted)

- p-value < 0.05 :
H0 is rejected

- p-value < 0.01 :
this rejection of H0 is significant

- p-value < 0.001 :
this rejection of H0 is very significant



Do not reject vs. accept

Why should we say "do not reject H0" rather than "accept H0"?

- If we reject H0 (at the risk of error α), it is because the 
observations are such that it is unlikely that H0 is true.

- If we do not reject H0, it is because we do not have sufficient 
criteria, no clear evidence to be able to say that H0 is false.

=> This does not mean that H0 is true.

The tests are not done to "prove" H0, but to reject it



Types of tests

If H0 corresponds to an equality pA=pB, then H1 can be...

- One-sided: an inequality pA > pB (or pA < pb)

The question here is whether the effectiveness of treatment A is 
greater than that of treatment B

- Bilateral: an inequality pA ≠ pB

The question here is whether the efficiencies are different



Types of tests
● Paramétrique : supposent que la population suit une distribution de 

probabilité (normale…). 
=> cette hypothèse doit être vérifiée avant de se fier au résultat 
d’un test paramétrique. 

● Non-paramétrique : ne supposent pas d’hypothèse sur la population. 
(Il n’y a donc pas d’hypothèses à vérifier au préalable avant de 
les utiliser.)



Types of tests
● Conformity test: compare a parameter calculated on the sample with 

a pre-established value

● Fit or adequacy test: to check the compatibility of the data with a 
distribution chosen a priori (normal distribution...)

● Homogeneity or comparison test: check that K samples come from the 
same population

● Independence or association test: to prove the existence of a link 
between 2 variables



Practice of hypothesis 
testing



Practice of hypothesis 
testing

*
The normality test



Normality test: Shapiro-Wilk
H0: "the sample is from a population with a Gaussian distribution".

H1 : "the sample does not come from a population with a Gaussian 
distribution".

- p-value > 0.05 : H0 is not rejected

=> we can (dare to) admit normality

- p-value < 0.05 : the normality hypothesis is rejected
- p-value < 0.001 : the rejection of the normality of the data is 

highly significant



Normality test: Shapiro-Wilk

p-value > 0.05 => normality hypothesis 
accepted for the width of iris sepals



The quantile-quantile diagram

● Q-Q plot: graphical tool to evaluate the adequacy of the fit of a 
given distribution to a theoretical model.

● The position of some quantiles in the observed population is 
compared with their position in the theoretical population



The quantile-quantile diagram

Width of iris sepals

Good fit: assumption of 
normality seems reasonable



The quantile-quantile diagram

Length of the iris petals

Poor fit: no normality
(2 gaussians ?)



Practice of hypothesis 
testing

*
Tests of variance



Bartlett's test of equality of variances

Bartlett's test allows to estimate the null hypothesis that at least 
two normal populations of which we have the samples have the same 
variance.

- H0: the variances of the populations are equal,
- H1: the variances of the populations are different.

(This is a parametric test.)

Bartlett's test generalizes Fisher's F test of equality of two 
variances.



Bartlett's test of equality of variances: example

Do the sizes of men and women have the same variance?

   Women                                                                            Men



Bartlett's test of equality of variances: example

Do the sizes of men and women have the same variance?

   Women                                                                            Men

We cannot reject the hypothesis 
that the populations are normal



Bartlett's test of equality of variances: example

Do the sizes of men and women have the same variance?

   Women                                                                            Men

p < 0.05: we can reject the
hypothesis of homoscedasticity



Levene's test of equality of variances

Levene's test allows to estimate the null hypothesis that at least 
two populations of which we have the samples have the same variance.

- H0: the variances of the populations are equal,
- H1: the variances of the populations are different.

(It is no longer a parametric test).

Levene is an alternative to Bartlett in the case where there is no 
normality of the populations.



Levene's test of equality of variances

Levene's test allows to estimate the null hypothesis that at least 
two populations of which we have the samples have the same variance.

- H0: the variances of the populations are equal,
- H1: the variances of the populations are different.

(Il ne s’agit plus d’un test paramétrique.)

=> The low p-value suggests that the populations do not have equal variances.



Practice of hypothesis 
testing

*
Tests of average



Student's t-test

The t-test, or Student's t-test, is used to measure the differences 
between the means :

- of two groups,
- or of a group compared to a standard value.

It is based on a probability law called Student's law.

Performing this test is used to understand if the differences are 
statistically significant (if they are not due to chance).



One sample Student's t-test

We assume that our sample is from a population with a normal 
distribution (Shapiro-Wilk test).

We want to test the hypothesis that the mean μ of the distribution 
from which we have the sample is worth a certain value m

- H0: μ = m
- H1: μ ≠ m

e.g.: a sample of 1000 voters is asked whether they will vote right in the next election. 
We wonder if, from this sample, we can infer the results of the next elections (i.e. on 
the whole population)



One sample Student's t-test

Width of iris sepals    H0 : μ = 2
   H1 : μ ≠ 2

We reject H0 and this 
rejection is very 
significant:

the (normal) population of 
sepal widths does not have 
a mean of 2



One sample Student's t-test

Width of iris sepals
   H0 : μ = 2

   H1 : μ > 2

We reject H0 and this 
rejection is very significant 

We can therefore state, with a 
small risk of being wrong, 
that the unknown mean is 
greater than 2



Student's t test with two independent samples

We want to test the equality of means of two populations from two 
independent samples:

- H0: μ1 = μ2, vs.
- H1: μ1 ≠ μ2,

(e.g., survival expectancy of individuals who have or have not taken 
a particular drug).

If the populations are normal and have the same variance, a two 
independent sample Student's t-test can be performed.



Two independent samples t-test

Do men's and women's sizes have the same average?

   Women                                                                            Men



Two independent samples t-test

Do men's and women's sizes have the same average?

   Women                                                                            Men

Having performed the tests of normality and equality of variances...

p-value < 0.5 : we reject the hypothesis of equality of means



Practice of hypothesis 
testing

*
χ2 test of independence



 χ2 of independence of dichotomous factors

We want to test the independence of two (binary) characteristics in a 
given population.

For example, the occurrence (or not) of a given side effect 
following the use (or not) of a given drug.

(Is there more heart failure in patients treated with Rituximab 
(lymphoma) than in those who are not?)

Or: having a boy as your first child, having a boy as your second 
child.

    



 χ2 of independence of dichotomous factors

H0: "The two binary variables are independent"

Contingency table :



 χ2 of independence of dichotomous factors

H0: "The two binary variables are independent"



 χ2 of independence of dichotomous factors

H0: "The two binary variables are independent"

Independence hypothesis rejected



 χ2 of independence of dichotomous factors

This test can at best establish dependency.

It does not provide any information :

- on the intensity of the relationship,
- on the causality.

Scope of application:

- total number > 30,
- the theoretical numbers are all ≥ 5.



Project



Lymphome project: objectives

● In lymphoma, patients were treated for 5 years with (or without) 
Rituximab (a drug), and with or without chemotherapy

○ These treatments may have introduced side effects, which had 
to be treated

○ If this is the case, it leads to an increase in the total 
cost of the treatment, and to the question of whether this 
money could not have been used in a better way

● You must answer the following questions:
○ what actually impacts the total cost?
○ Is the total cost significantly higher in patients treated 

with rituximab?
○ Are there any side effects associated with taking this drug?



Lymphome project: methodology

1. First, the data must be cleaned (don’t need to collect all 
features)

2. Then, various graphs and statistics must be produced to describe 
the data, keeping in mind the project objectives

3. Finally, use various statistical tests to provide some answers
4. All this, in a jupyter notebook, using pandas

The data: https://we.tl/t-KqHbbzEEbp

my email: cguyeux@femto-st.fr

https://we.tl/t-KqHbbzEEbp

