

A single neuron linear classifier

M. Salomon

FEMTO-ST Institute - DISC Department - AND Team Univ. Bourgogne Franche-Comté (UBFC), France

January 16, 2024

1st year Master in Computer Science - Internet of Things

A linear neuron for classification

- two inputs $(x_1 \text{ and } x_2)$
- one output (y^t)
- The function P_W implemented by the perceptron satisfies:

•
$$P_W: \mathbb{R}^2 \to \mathbb{R}$$

•
$$P_W\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = f\left(w_0 \cdot x_0 + w_1 \cdot x_1 + w_2 \cdot x_2\right) = y$$

where $x_0 = +1$ is the bias

• When f is the identity function f(x) = x (linear neuron) then

•
$$P_W\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = w_0 \cdot 1 + w_1 \cdot x_1 + w_2 \cdot x_2 = w_0 + \sum_{i=1}^2 w_i \cdot x_i$$

Training of this linear perceptron

- Supervised case → a training set S
 - *n* observations which are input-output pairs
 - $S = \{(X_1, Y_1^t), \dots, (X_n, Y_n^t)\}$, where (X_j, Y_j^t) is a pair
- Supervised training \rightarrow an optimization problem
 - Error / Loss function $L \rightarrow$ drives the training

$$\min_{W} \quad \left[\frac{1}{n} \sum_{j=1}^{n} L\left(P_{W}(X_{j}), Y_{j}^{t}\right) \right] \\
\min_{W} \quad \left[\frac{1}{n} \sum_{j=1}^{n} L\left(y_{j}, y_{j}^{t}\right) \right]$$

- Mean Squared Error / Loss $\rightarrow L(y, y^t) = \frac{1}{2}(y y^t)^2$
- For a problem with two inputs and one output $(x_j, Y_j^t) = ((x_{1j}, x_{2j}), y_j^t)$ the objective function to be minimized is

$$\min_{w} \left[\frac{1}{n} \sum_{j=1}^{n} \frac{1}{2} \left(\left(w_0 + \sum_{i=1}^{2} w_i \cdot x_{ij} \right) - y_j^t \right)^2 \right]$$

Training of this linear perceptron - 1/2

Update rules / weights correction

$$\mathbf{w}_i = \mathbf{w}_i - \gamma \cdot \frac{\partial L}{\partial \mathbf{w}_i}$$

where γ is the *learning rate*

- Loss function seen as a composite function
 - $L(y_j, y_i^t) = \frac{1}{2} I_j^2$
 - $I_j = y_j y_i^t$
 - $y_j = f(v_j) = v_j$ (f is the activation function \rightarrow linear function)
 - $v_j = w_0 + \sum_{i=1}^2 w_i \cdot x_{ij}$

Training of this linear perceptron - 2/2

- Gradient computation $\nabla L(y_j, y_j^t) = \left(\frac{\partial L}{\partial w_0}, \frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2} \right)^T$
- Computation of each component $\frac{\partial L(y_j,y_j^t)}{\partial w_i}$ using chain rule

$$\frac{\partial L(y_j, y_j^t)}{\partial w_i} = \frac{\partial L}{\partial l_j} \cdot \frac{\partial l_j}{\partial y_j} \cdot \frac{\partial y_j}{\partial v_j} \cdot \frac{\partial v_j}{\partial w_i}$$

where

- $\frac{\partial L}{\partial l_j} = l_j$; $\frac{\partial l_j}{\partial y_j} = 1$; $\frac{\partial y_j}{\partial v_j} = 1$
- $v_j = w_0 + \sum_{i=1}^2 w_i \cdot x_{ij}$

Practical implementation - 1/2

- Let us consider a binary classification problem
 - Two classes (labels) $\rightarrow y_i^t \in \{0, 1\}$
 - Generate a dataset (make_blobs; make_moons)
 - ▶ Use datasets module of sklearn
 - ► Watch Sample generators
 - Display the data set with mathplotlib
- Write a function predict → computes the percep. output
 - Inputs → an observation from dataset; weights
 - Output → input vector class (label) y_i
 - ightharpoonup 0 if $P_W(X_j)$ is negative
 - ▶ 1 if $P_W(X_i)$ is positive or zero
- Write a function training → trains the perceptron
 - Inputs \rightarrow training set; learning rate; number of epochs (2 nested loops \rightarrow nb epochs; training set then update w_i for (X_j, Y_i^t))
 - Output → weights obtained after training

Practical implementation - 2/2

- Write a function accuracy → percep. classif. accuracy
 - Inputs → dataset; weights
 - Output → percentage of observations well-classified
- Write a function crossValid → cross-validation
 - Inputs → dataset; number of subsets (folds)
 (Split the data set in n disjoint testing subsets k-fold with k = n)
 - ► Use model_selection module of sklearn learning rate; number of epochs
 - $\bullet \ \ \textit{Output} \rightarrow \text{vector with the weights of the best perceptron} \\$
- Combine the function to evaluate the performance of a perceptron using cross-validation validation on the data set
- Compare different variations of gradient descent (methods)
 - Batch GD, SGD, Mini-batch GD

Squared error and linear neuron as output \rightarrow Regression pb

A sigmoid neuron for classification

- What is the drawback of a linear regression?
 - Observations far from the line separating the classes
 - ⇒ High impact on the position of the line
 - How to limit their influence?
 - ⇒ By transforming the values of the linear function
- Let us take as activation function the sigmoid one

$$g(x) = \frac{1}{1 + e^{-x}}$$

- Sigmoid neuron output value is between 0 and 1
 - $P_W(X_i) < 0.5 \rightarrow y_i = 0$
 - $P_W(X_j) \ge 0.5 \to y_j = 1$

The closest the output to 0.5, the more the result is unsure

Loss function bayesian interpretation

- Consider the output as the probability that $y_i^t = 1$
 - Hence $P(y_i^t = 1 | X_j; W) = P_W(X_j) = g(X_j)$
 - and thus $P(y_i^t = 0|X_j; W) = 1 P(y_i^t = 1|X_j; W) = 1 g(X_j)$
- Training process
 - What should it do?
 - \Rightarrow Penalize the more the probability y_i is far from y_i^t
 - Negative log-likelihood loss
 - ⇒ Squared error is difficult to optimize

$$L_{nlv}(y_{j}, y_{j}^{t}) = -y_{j}^{t} \log(y_{j}) - (1 - y_{j}^{t}) \log(1 - y_{j})$$

$$= \begin{cases} -\log(1 - y_{j}) & \text{if } y_{j}^{t} = 0 \\ -\log(y_{j}) & \text{if } y_{j}^{t} = 1 \end{cases}$$

Loss function bayesian interpretation

Taking negative of the log of Bernoulli Distribution

Binary Cross Entropy Loss
$$(y, \hat{p}) = -\log(P(y \mid x))$$

$$= -(y\log(\hat{p}) + (1 - y)\log(1 - \hat{p}))$$

$$= -y\log(\hat{p}) - (1 - y)\log(1 - \hat{p})$$
minimum point (optimum)
$$\begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}$$
output
$$\begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}$$
output
$$\begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}$$
output
$$\begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}$$
output
$$\begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}$$
output
$$\begin{bmatrix} x \\ y \\ y \end{bmatrix}$$

